

Copyright © 2021 A. Ratnani

PUBLISHED BY UM6P UNIVERSITY

UM6P.MA

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain
a copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Un-
less required by applicable law or agreed to in writing, software distributed under the License is
distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

First printing, October 2021

http://creativecommons.org/licenses/by-nc/3.0

Foreword
This book was created and is still evolving out oy my lectures at the graduate level, that I teached at
TUM and still teaching at UM6P (Master TIUF, Master MSD).

Last but not least, I would like to thank my graduate students and colleagues, for their useful
comments and discussions.
Dr. Ahmed Ratnani

TODO:
• Historical notes
• Exercises
• Applications
• Linear Solvers
• Add the lecture Approximation and Learning theory?

Contents

I Computer Aided Design

1 Introduction . 11

1.1 Implicit form 11
1.2 Parametric curves 11
1.3 Power basis form of a curve 13
1.4 Problems 13

2 Bézier curves . 15

2.1 Bernstein polynomials 15
2.2 Bézier curves 16
2.3 DeCasteljau Algorithm 21
2.4 Conversion from/to monomial form 22
2.5 Rational Bézier curves 23
2.6 Composite Bézier curves 23
2.7 Problems 25

3 B-Splines . 27

3.1 Knot vector families 28
3.2 Examples 29
3.3 B-Splines properties 38
3.4 Derivatives of B-Splines 40
3.5 Problems 41

4 Cardinal B-Splines . 42

4.1 Cardinal B-Splines 42
4.1.1 Cardinal B-Splines properties . 44

4.2 Cardinal B-Spline series 46
4.2.1 Scaled and translated Cardinal B-Splines . 46
4.2.2 Cardinal Splines . 46

4.3 Problems 47

5 B-Splines curves . 48

5.1 B-Splines curves 48
5.2 Derivtive of a B-spline curve 52
5.3 Rational B-Splines (NURBS) curves 53
5.3.1 Modeling conics using NURBS . 53

5.4 Fundamental geometric operations 59
5.4.1 Knot insertion . 59
5.4.2 Degree elevation . 62

5.5 Problems 64

6 Historical Notes . 66

II Approximation theory for B-Splines

7 Divided differences . 69

7.1 Lagrange interpolation 69
7.1.1 Newton form and Neville’s algorithm . 70

7.2 Hermite interpolation 71
7.3 Divided differences 71
7.4 Problems 73

8 Schoenberg space of Spline functions . 74

8.1 Basic Splines 74
8.1.1 Smoothness of a B-Spline . 75

8.2 Spline functions 75
8.3 Dual functionals 77
8.4 Problems 78

9 Spline Approximation . 79

9.1 Introduction 79

9.2 Examples 79
9.2.1 Piecewise linear interpolation . 79
9.2.2 Variation diminishing spline approximation . 80

9.3 Quasi-Interpolation 83
9.3.1 General recipe for quasi-interpolants . 83
9.3.2 Examples . 83
9.3.3 Computing the coefficients functionals . 85

9.4 Global approximation 86
9.4.1 Interpolation . 86
9.4.2 Histopolation . 87
9.4.3 Least-square approximation . 88

9.5 Approximation with Quasi-Interpolation 90
9.5.1 Quasi-interpolation and reproduction of polynomials . 91
9.5.2 Examples . 92

9.6 Approximation power of Splines 92

9.7 Problems 92

10 Historical Notes . 93

III Finite Elements method

11 Functional Analysis . 96

11.1 Notations and Preliminaries 96

11.2 Sobolev spaces 97
11.2.1 The Sobolev space W s,m . 97
11.2.2 The Sobolev space Hm . 98
11.2.3 Inequalities . 98

11.3 The Sobolev space H(curl,Ω) 98

11.4 The Sobolev space H(div,Ω) 98

11.5 DeRham sequences 98
11.5.1 Exact discrete DeRham sequence . 99
11.5.2 Space decompositions . 99

11.6 Problems 100

12 Galerkin methods . 101

12.1 Abstract framework 101

12.2 Galerkin Approximation 102
12.2.1 Convergence under coercivity . 102
12.2.2 Convergence under inf-sup conditions . 103
12.2.3 The three basic aspects of the Finite Elements method . 104
12.2.4 Examples . 105

12.3 Saddle-point problems 107
12.3.1 Examples . 108
12.3.2 Galerkin approximation . 110
12.3.3 Examples . 112

12.4 Problems 114

13 Historical Notes . 115

IV Isogeometric Analysis

14 Isogeometric Finite Elements . 118

14.1 Sobolev estimations under h-refinement 118
14.1.1 Approximation properties without mapping . 118
14.1.2 Approximation properties with mapping . 121

14.2 Galerkin approximation 122
14.2.1 Case without mapping . 122
14.2.2 Case with mapping . 124

14.3 Exact DeRham sequences 127
14.3.1 Commuting diagrams . 130
14.3.2 Examples without mapping . 133
14.3.3 Pullbacks . 137
14.3.4 Examples with mapping . 138

14.4 Problems 138

15 Historical Notes . 139

V Linear Algebra

16 Kronecker Algebra . 142

16.1 Kronecker algebra 142
16.1.1 Kronecker sum . 145
16.1.2 Solving AX +XB =C . 145
16.1.3 Solving AXB =C . 146
16.1.4 Solving ∑

r
i=1 AiXBi =C . 146

16.2 Problems 146

17 Historical Notes . 147

VI Applications

18 Navier Stokes . 150

18.1 Problems 150

19 Historical Notes . 151

Bibliography . 152

Articles 152
Books 153

I
1 Introduction . 11
1.1 Implicit form
1.2 Parametric curves
1.3 Power basis form of a curve
1.4 Problems

2 Bézier curves . 15
2.1 Bernstein polynomials
2.2 Bézier curves
2.3 DeCasteljau Algorithm
2.4 Conversion from/to monomial form
2.5 Rational Bézier curves
2.6 Composite Bézier curves
2.7 Problems

3 B-Splines . 27
3.1 Knot vector families
3.2 Examples
3.3 B-Splines properties
3.4 Derivatives of B-Splines
3.5 Problems

4 Cardinal B-Splines 42
4.1 Cardinal B-Splines
4.2 Cardinal B-Spline series
4.3 Problems

5 B-Splines curves . 48
5.1 B-Splines curves
5.2 Derivtive of a B-spline curve
5.3 Rational B-Splines (NURBS) curves
5.4 Fundamental geometric operations
5.5 Problems

6 Historical Notes . 66

Computer Aided Design

1. Introduction

1.1 Implicit form
Among the different representations to describe a quarter of circle (of radius 1 and centered at the
origin), one can use an implicit form using the equation

f (x,y) := x2 + y2−1 = 0, x≥ 0 and y≥ 0

In practice, implicit forms are well adapted for unbounded geometries. On the other hand, given a
point, it is easy to determine if it is on the curve or a surface. Although, this is an important question,
in general, we are interested in geometric manipulations in CAD systems, such as improving the
resolution, smoothness and having local control of a given curve or surface. These properties
are very difficult to ensure when using an implicit form; at the end, a computer needs discrete
values in order to plot or manipulate a CAD object, which is in opposition with the analytical form
represented by an equation.

1.2 Parametric curves
Another way of representing a quarter of circle is to consider the parametric curve define in 1.1,
where θ ∈

[
0, π

2

]
C (θ) =

[
x(θ)
y(θ)

]
=

[
cosθ

sinθ

]
(1.1)

in which case we can compute its derivative as

C ′(θ) =

[
−sinθ

cosθ

]
(1.2)

The tangent at θ = 0 and θ = π

2 are then given by C ′(θ := 0) =
[

0
1

]
and C ′(θ := π

2) =

[
−1
0

]
.

Another way to represent the quarter of circle, is to introduce the variable t := tan θ

2 , then we get

12 Chapter 1. Introduction

Figure 1.1: Quarter of circle of radius 1, using polar coordinates.

the following rational form 1.3, where t ∈ [0,1],

C (t) =
[

x(t)
y(t)

]
=

[
1−t2

1+t2
2t

1+t2

]
(1.3)

There are different advantages for having a parametric form:
• Extending a 2D curve to 3D,
• Ideal for bounded curves and surfaces,
• Natural orientation of curves and surfaces,
• Appropriate representation for design on a computer. In some particular cases, the coefficients

in a parametric form possess interesting geometric significance,
• Computing a point on a curve is easy, while finding its parametric value is a in general a

non-linear problem,

R Notice that in some cases, this representation may introduce singularities that are unrelated to
the described geometry.

R Computing the derivatives (tangent or normal vectors at the extremeties) needs an evaluation.
We shall be more interested in representation where such informations can be extracted
directly from the parametric representations.

Although one can use any parametric representation for CAD systems, it is important to restrict
to a representation that is

• capable of reproducing a wild class of curves/surfaces
• easy to implement
• efficient and accurate evaluation
• numerical stable evaluation
• easy evaluation of points and their derivatives
• evaluation complexity of the same or comparable order as polynomials
• small memory storage

1.3 Power basis form of a curve 13

1.3 Power basis form of a curve
If we restrict our representation to polynomials, one naive way would be to use power basis, i.e.
monomials as in 1.4

C (t) =
n

∑
i=0

ait i (1.4)

where ai =

ax
i

ay
i

az
i

 are 2D or 3D vectors.

Using the Taylor expansion, we get C ′(t)|t=0 = i!ai, which leads to ai =
C ′(t)|t=0

i! . We then have a
direct access to the derivative at t = 0, but only at this point.
The evaluation of such a form can be done using the Horner algorithm as described in 1.5:

C (t) = a0 + t (a1 + t (a2 + t (· · ·+ t (an−1 + tan)))) (1.5)

Algorithm 1: HORNER: Evaluation of a polynomial defined by its coefficients a at x.
Input :a,x
Output :v

1 n← len(P)−1
2 v← a[n]
3 for i← n−1 to 0 do
4 v← vx+a[i]
5 end
6 return v

R The Horner algorithm is numerically unstable for high degrees, more details can be found in
[7] [8] [12] [2].

R The use of power basis form is not suited for shape and geometric design; the coefficients do
not have any geoemtric meaning and modifying them do not allow for a good control of a
curve or a surface,

1.4 Problems
Exercise 1.1 Consider the two parametric representations of the circular arc given by Eqs. (1.1)
and (1.3). Using Eq. (1.1), compute the curve point at u = π

4 and, using Eq. (1.3), the point at
t = 1

2 . Explain the results. �

Exercise 1.2 Compute the acceleration vector, C ′′(u), for Eq. (1.1). Explain the result. �

Exercise 1.3 Consider the parabolic arc C ′′(u) = (x(u),y(u)) =
(
−1−u+2u2,−2u,u2

)
for

0≤ u≤ 1. Plot the curve C , then apply the transformations
• a rotation of π

2 about the origin. We recall that the rotation matrix (applied from the left)

14 Chapter 1. Introduction

is (
0 −1
1 0

)
• a translation with the vector (−1,−1).

Compute the implicit equation of the associated parabola. �

Exercise 1.4 Determine formulas for the number of additions and multiplications necessary to
compute a point on an nth-degree three-dimensional power basis curve. �

Exercise 1.5 Construct a cubic power basis curve with a loop. Hint: think about what end-
points and end derivatives, C ′(0) and C ′(1), are necessary. �

Exercise 1.6 Construct a cubic power basis curve with a cusp. Hint: think about C ′(u) and
C ′′(u). Sketch what x′(u),y′(u),x′′(u), and y′′(u) need to look like as functions of u. Determine
a suitable C ′′(u), and then integrate to obtain C ′(u) and C (u). �

Exercise 1.7 Construct a cubic power basis curve with an inflection point. �

Exercise 1.8 Compare the CPU cost for an evaluation for the presented representations. �

Exercise 1.9 Compute the CPU cost for the Horner algorithm. �

Exercise 1.10 Write a Python implementation for the Horner algorithm. �

Exercise 1.11 — Parallel evaluation. Let us consider a polynomial P of degree n, defined as
P(t) = ∑

n
i=0 ait i. Using the form

P(t) =
k−1

∑
j=0

x jPj(xk)

as a splitting into k independent parts, write a Python code for the parallel evaluation and
compute its complexity. �

2. Bézier curves

2.1 Bernstein polynomials

In 1885, Weierstrass proved that the set of polynomial functions on [0,1] is dense in C ([0,1]). In
1912, Sergei Bernstein gave a simple proof to this result by introducing the now-famous Bernstein
polynomials 2.1:

Bn
k(x) =

(
n
k

)
xk(1− x)n−k, where k ∈ [0,n] and x ∈ [0,1] (2.1)

In figure Fig. 2.1, we plot Bernstein polynomials of degrees 1 to 5. From these plots, we see that
Bernstein polynomials are positive, the first and last polynomials are equal to 1 on the 0 and 1
respectivaly. More properties will be discussed in the sequel.

Properties of Bernstein polynomials
• Bn

k(x)≥ 0, for all k ∈ [0,n] and x ∈ [0,1] [positivity]
• ∑

n
k=0 Bn

k(x) = 1, for all x ∈ [0,1] [partition of unity]
• Bn

0(0) = Bn
n(1) = 1

• Bn
k has exactly one maximum on the interval [0,1], at k

n
•
(
Bn

k(x)
)

0≤k≤n is symmetric with respect to x = 1
2 [symmetry]

• Bernstein polynomials can be defined recursively using the formulae 2.2

Bn
k(x) = (1− x)Bn−1

k (x)+ xBn−1
k−1(x) (2.2)

where we assume Bn
k(x) = 0 is k < 0 or k > n

• Bernstein derivatives can be computed using the formulae 2.3

Bn
k
′(x) = n

(
Bn−1

k−1(x)−Bn−1
k (x)

)
(2.3)

using the same assumption as before.

16 Chapter 2. Bézier curves

Figure 2.1: Bernstein polynomials of degree n = 1,2,3,4,5.

2.2 Bézier curves
Rather than taking the power basis as in 1.4, Pierre Bézier used Bernstein polynomials, in the 1960s
while working at Renault. This leads to the following definition of a polynomial curve 2.11

C (t) =
n

∑
k=0

PkBn
k(t) (2.4)

The vector coefficients (P)0≤k≤n are called Bézier points or control points. The reason for this will
become clear in the sequel.

Examples
Example 1. A linear (n = 1) Bézier curve (fig. 2.3) is defined as

C (t) = P0B1
0(t)+P1B1

1(t)

which describes a straight line from P0 to P1, since B1
0(t) = 1− t and B1

1(t) = t.

2.2 Bézier curves 17

Figure 2.2: General evaluation triangular diagram for a Bernstein polynomials.

Figure 2.3: Example of a linear Bézier curve.

18 Chapter 2. Bézier curves

Figure 2.4: Example of a quadratic Bézier curve.

Figure 2.5: Example of a cubic Bézier curve.

Example 2. A quadratic (n = 2) Bézier curve (fig. 2.4) is defined as

C (t) = (1− t)2P0 +2t(1− t)P1 + t2P2

We remark that
- the curve starts at P0 and ends at P2,
- the curve does not pass through the point P1,
- the tangent directions to the curves at its extremeties are parallel to P1−P0 and P2−P1,
- the curve is contained in the polygone (triangle) formed by P0P1P2. This polygone is

called the control polygon and it approximates the shape of the curve.
Example 3. A cubic (n = 3) Bézier curve (figures 2.5,2.6,2.7) is defined as

C (t) = (1− t)3P0 +3t(1− t)2P1 +3t2(1− t)P2 + t3P3

We remark that
- the curves start at P0 and end at P3,

2.2 Bézier curves 19

Figure 2.6: Example of a cubic Bézier curve.

Figure 2.7: Example of a cubic Bézier curve.

20 Chapter 2. Bézier curves

- the curves do not pass through the points P1 and P2,
- the tangents directions to the curves at their extremeties are parallel to P1−P0 and

P3−P2,
- the control polygons approximate the shape of the curves,
- the curves follow the orientation of the control polygons,
- the curves are contained in the convex hulls of their control polygons (convex hull

property).

Derivatives of a Bézier curve
Using the formulae 2.3, we have

C ′(t) =
n

∑
k=0

PkBn
k
′(t) =

n

∑
k=0

nPk
(
Bn−1

k−1(x)−Bn−1
k (x)

)
by reordering the indices, we get 2.5

C ′(t) =
n−1

∑
k=0

n(Pk+1−Pk)Bn−1
k (t) (2.5)

Therefor, we get the direct acces to the first order derivatives at the extremeties of a Bézier curve
using the formulae 2.6

{
C ′(0) = n(P1−P0)

C ′(1) = n(Pn−Pn−1)
(2.6)

Second derivatives can also be computed directly from the control points using the formulae 2.7

{
C ′′(0) = n(n−1)(P0−2P1 +P2)

C ′′(1) = n(n−1)(Pn−2Pn−1 +Pn−2)
(2.7)

Definition 2.2.1 — rth forward difference. Let us consider a set of (control) points P. The rth

forward difference of P is defined as

4rPi :=4r−1Pi+1−4r−1Pi

with

4Pi =41Pi := Pi+1−Pi

Proposition 2.2.1 — High order dirivatives.

C (r)(t) =
n!

(n− r)!

n−r

∑
i=0
4rPiBn−r

i (t) (2.8)

Eqs (2.6) and (2.7) can be generelaized for high order derivatives. We have in fact the following
result:

R The derivatives of a Bézier curve at its extremeties up to order r depend only on the first (or
last) r+1 control points, and vice versa.

Proposition 2.2.2

4rP0 =
r

∑
i=0

(−1)r−i
(

r
i

)
Pi

2.3 DeCasteljau Algorithm 21

Integration of Bézier curves
Proposition 2.2.3 A primitive of A Bézier curve C (t) = ∑

n
k=0 PkBn

k(t) has the Bézier representa-
tion (∫

C

)
(t) =

n+1

∑
k=0

QkBn+1
k (t) (2.9)

where

Qk := Qk−1 +
1

n+1
Pk−1 = Q0 +

1
n+1

(
k−1

∑
i=0

Pi

)

Here, Q0 denotes an arbitrary integration constant.

R Using Eq. (2.9), we have
∫ 1

0 C (t) dt = 1
n+1

(
n
∑

i=0
Pi

)
.

Properties of Bézier curves
Because of the symmetry of the Bernstein polynomials, we have

• ∑
n
k=0 PkBn

k = ∑
n
k=0 PkBn

n−k
Thanks to the interpolation property, for Bn

0 and Bn
n, of the Bernstein polynomials at the endpoints,

we get
• C (0) = P0 and C (1) = Pn

Using the partition unity property of the Bernstein polynomials, we get
• any point C (t) is an affine combination of the control points

Therefor,
• Bézier curves are affinely invariant; i.e. the image curve Φ(∑n

k=0 PkBn
k) of a Bézier curve, by

an affine mapping Φ, is the Bézier curve having (Φ(Pi))0≤i≤n as control points.
due to the partition unity of the Bernstein polynomials and their non-negativity,

• any point C (t) is a convex combination of the control points
finally, we get the convex hull property,

• A Bézier curve lies in the convex hull of its control points

2.3 DeCasteljau Algorithm
In this section, we introduce the deCasteljau algorithm Algo. (2). The basic idea comes from the
following remark; using the reccurence formulae Eq. (2.2), we have

C (t) =
n

∑
k=0

PkBn
k(t) =

n

∑
k=0

Pk
(
(1− t)Bn−1

k (t)+ tBn−1
k−1(t)

)
=

n−1

∑
k=0

P1
kBn−1

k (t) [P1
k := (1− t)Pk + tPk+1]

=
n−2

∑
k=0

P2
kBn−2

k (t) [P2
k := (1− t)P1

k + tP1
k+1]

= . . .

=
0

∑
k=0

Pn
kB0

k(t) [Pn
k := (1− t)Pn−1

k + tPn−1
k+1]

= Pn
0

22 Chapter 2. Bézier curves

Algorithm 2: DECASTELJAU: Evaluation of a Bézier curve, defined by its control points
P at x.

Input :P,x
Output :value

1 n← len(P)−1
2 Q← P
3 for j← 0 to n do
4 for i← 0 to n− j do
5 Q[i]← (1− x)Q[i]+ xQ[i+1]
6 end
7 end
8 return Q[0]

2.4 Conversion from/to monomial form
Conversion from monomial form
Let us consider a monomial representation of a curve

C (t) =
n

∑
k=0

Qktk

Since

tk =
1(n
k

)(n
k

)
tk (1− t + t)n−k =

1(n
k

) (n−k

∑
i=0

(
n
k

)(
n− k

n− k− i

)
t i+k (1− t)n−k−i

)

=
1(n
k

) (n−k

∑
i=0

(
k+ i

k

)
Bn

k+i(t)

)
=

1(n
k

) (n

∑
j=0

(
j
k

)
Bn

j(t)

)
we get,

C (t) =
n

∑
k=0

Qktk =
n

∑
k=0

Qk
1(n
k

) (n

∑
j=0

(
j
k

)
Bn

j(t)

)
hence,

C (t) =
n

∑
j=0

(
n

∑
k=0

(j
k

)(n
k

)Qk

)
Bn

j(t)

which is a Bézier curve of the form

C (t) =
n

∑
k=0

PkBn
k(t)

with

Pk =
n

∑
k=0

(j
k

)(n
k

)Qk

R If Qk = 0 for all k ≥ 2, then the control points are given by Pk = Q0 + kQ1.

Proposition 2.4.1 — Linear Precision. Conversly, if the n+1 control points P lie equidistantly
on a line, then C is a linear polynomial, which can be written as C (t) = (1− t)P0 + tPn.

2.5 Rational Bézier curves 23

Conversion to monomial form
Given a Bézier curve C (t) = ∑

n
k=0 PkBn

k(t), we can derive its monomial representation using the
Taylor expansion,

C (t) =
n

∑
k=0

1
k!

C (k)(0)tk

=
n

∑
k=0

(
n
k

)
4kP0tk

2.5 Rational Bézier curves
We first introduce the notion of Rational Bernstein polynomials defined as, and wi > 0,∀i ∈ [0,n]

Rn
k(t) :=

wiBn
k(t)

∑
n
i=0 wiBn

i (t)
(2.10)

Properties of Rational Bernstein polynomials
• Rn

k(x)≥ 0, for all k ∈ [0,n] and x ∈ [0,1] [positivity]
• ∑

n
k=0 Rn

k(x) = 1, for all x ∈ [0,1] [partition of unity]
• Rn

0(0) = Rn
n(1) = 1

• Rn
k has exactly one maximum on the interval [0,1],

• Bernstein polynomials are Rational Bernstein polynomials when all weights are equal

Definition 2.5.1 — Rational Bézier curve.

C (t) =
n

∑
k=0

PkRn
k(t) (2.11)

where Rn
k(t) := wiBn

k(t)
∑

n
i=0 wiBn

i (t)
and wi > 0,∀i ∈ [0,n]

Examples
Example 1. We consider the quadratic Rational Bézier curve,

where the weights are given by w0 = 1, w1 = 1 and w2 = 2 and the control points are

P0 =

(
1
0

)
, P1 =

(
1
1

)
and P2 =

(
0
1

)
.

This leads to a representation of the circular arc, using the parametric form C (t) =

(
1−t2

1+t2
2t

1+t2

)
.

2.6 Composite Bézier curves
A composite Bézier curve is a piecewise Bézier curve that is at least continuous at the interpolant
control points. An example is given in Fig. 2.9. The global curve inherit all the nice properties of
Bézier curves however, it has a major drawback: when moving an interpolant control point, we
must ensure that the associated regularity is not broken, unless it is what we want. This means that a
good representation of a curve needs to have the locality control through control points, but also the
control points must be associated to some given regularity. Since Bernstein polynomials are defined
locally on the interval [0,1], and they do not encode any global redularity of the curve, we need
another representation, in terms of other functions, while keeping in mind that these functions must
be polynomials on every sub-interval. Such representation is provided by the Schoenberg spaces,
for which B-Splines form a basis. In the next chapter, we will first introduce the uniform Splines,
also known as Cardinal Splines, show their advantages and limitations, then we will introduce the
general definition of B-Splines.

24 Chapter 2. Bézier curves

Figure 2.8: Circular arc using quadratic Rational Bézier curve.

Figure 2.9: A composite Bézier curve using 3 quadratic Bézier curves.

2.7 Problems 25

2.7 Problems

Exercise 2.1 Show all Bernstein properties. �

Exercise 2.2 Consider a cubic Bézier curve C in R2 with th following control points:

P0 = (0,6) , P1 = (3,6) , P2 = (6,3) , P3 = (6,0)

Compute the point C (1
3) using the deCasteljau algorithm. Compute the same point by Eqs. (??)

and (??), meaning, evaluate the basis functions at u = 1
3 then multiply by the associated control

points. �

Exercise 2.3 The Bernstein operator B assigns to a function f on [0,1] the polynomial

B[f](t) :=
n

∑
i=0

f (
i
n
)Bn

i (t)

Show that if f is a polynomial of degree m≤ n, then B[f] is also a polynomial of degree m. �

Exercise 2.4 Show that a planar cubic Bézier curve has a cusp if P3 lies on the parabola

t→ (P0 +P1−P2)B2
0(t)+P1B2

1(t)+P2B2
2(t)

�

Exercise 2.5 For which choices of P3 does a planar cubic Bézier curve have a loop? �

Exercise 2.6 We consider a Bézier curve C (t) = ∑
n
k=0 PkBn

k(t).

1. Show that using the definition of Bernstein polynomials, we can write C as

C (t) = (1− t)n

(
n

∑
i=0

Pk

(
n
k

)(
t

1− t

)k
)

2. Write a modifier version of Horner algorithm based on the previous formula and compute
its arithmetic complexity.

3. What happens when t is close to 1? How to adapt the previous algorithm in this case?
�

Exercise 2.7 . �

Exercise 2.8 . �

Exercise 2.9 . �

Exercise 2.10 . �

26 Chapter 2. Bézier curves

Exercise 2.11 . �

Exercise 2.12 . �

3. B-Splines

In general, one needs to design curves with given regularities at some specific locations. For this
purpose, rather than considering piecewise Bézier curves with additional constraints on the control
points, we can enforce these constraints on a given space of functions. The Schoenberg spaces
[1946] are perfect for this purpose. Before giving more details about Schoenberg spaces, which
will be covered in the Approximation Theory part, let us for the moment, use a formal definition, as
the following: given a subdivision {x0 < x1 < · · ·< xr} of the interval I = [x0,xr], the Schoenberg
space is the space of piecewise polynomials of degree p, on the interval I and given regularities
{k1,k2, · · · ,kr−1} at the internal points {x1,x2, · · · ,xr−1}.
Given m and p as natural numbers, let us consider a sequence of non decreasing real numbers
T = {ti}06i6m. T is called knots sequence. From a knots sequence, we can generate a B-splines
family using the reccurence formula 3.1.

Definition 3.0.1 — B-Splines using Cox-DeBoor Formula. The j-th B-spline of degree p is
defined by the recurrence relation:

N p
j =

t− t j

t j+p− t j
N p−1

j +
t j+p+1− t

t j+p+1− t j+1
N p−1

j+1 , (3.1)

where
N0

j (t) = χ[t j,t j+1[(t)

for 0≤ j ≤ m− p−1.

R When working with Bernstein polynomials, we introduced the convention Bn
i = 0 for all i < 0

or i > n. For B-Splines, we have a similar convetion N p
j = 0 if j < 0 or j > n. In addition,

we also assume 0
0 = 0, when using the formula 3.1 and N0

j = 0 if t j = t j+1.

R k = p+1 is called the order of the B-Splines.

28 Chapter 3. B-Splines

Figure 3.1: General evaluation triangular diagram for a B-Spline.

In figure Fig. 3.2, we plot the quadratic B-Splines functions associated to the knots sequence
{0,0,0,1,2,2,3,4,5,5,5}. As we can see, there are 8 B-Splines functions and we recover the
interpolation property at the first and last knot. In addition, while all the B-Splines are smooth at
the internal knots, N2

3 is only C 0 at the grid point 2.
Now if we look for the cubic B-Splines that are associated to the same knots sequence {0,0,0,1,2,2,3,4,5,5,5},
we see that the interpolation property is no longer true 3.3.

Figure 3.2: Quadratic B-Splines generated using the knots sequence {0,0,0,1,2,2,3,4,5,5,5}.

3.1 Knot vector families

There are two kind of knot vectors, called clamped and unclamped. Both families contains
uniform and non-uniform sequences. In figure Fig. ??, we show examples of clamped uniform
knots. Fig. ??, we show examples of clamped non-uniform knots, while figures Fig. ?? and Fig. ??
are examples of unclamped knots sequences for uniform and non-uniform cases, respectively.
The special case of clamped sequences, where the first and the last knots are repeated p+1 times
exactly is known as open knot vector.

3.2 Examples 29

Figure 3.3: Cubic B-Splines generated using the knots sequence {0,0,0,1,2,2,3,4,5,5,5}.

Figure 3.4: Clamped uniform knots (left) quadratic B-Splines using T = {0,0,0,1,2,3,4,5,5,5},
(right) quadratic B-Splines using T = {−0.2,−0.2,0.0,0.2,0.4,0.6,0.8,0.8}.

Figure 3.5: Clamped non-uniform knots (left) quadratic B-Splines using T =
{0,0,0,1,3,4,5,5,5}, (right) quadratic B-Splines using T = {−0.2,−0.2,0.4,0.6,0.8,0.8}.

3.2 Examples

Before stating some B-Splines properties, let us take a look to some examples.

Example 1. Let T = {0,1,2} and p = 1.

30 Chapter 3. B-Splines

Figure 3.6: Unclamped uniform knots (left) quadratic B-Splines using T = {0,1,2,3,4,5,6,7,8},
(right) quadratic B-Splines using T = {−0.2,0.0,0.2,0.4,0.6,0.8,1.0}.

Figure 3.7: Unclamped non-uniform knots (left) quadratic B-Splines using T = {0,0,3,4,7,8,9},
(right) quadratic B-Splines using T = {−0.2,0.2,0.4,0.6,1.0,2.0,2.5}.

We first compute the B-Splines of degrees 0

N0
0 =

{
1, 0≤ t < 1
0, otherwise

N0
1 =

{
1, 1≤ t < 2
0, otherwise

The B-Splines of degree 1 is

N1
0 =

t−0
1−0

N0
0 +

2− t
2−1

N0
1

which yields

N1
0 =


t, 0≤ t < 1
2− t, 1≤ t < 2
0, otherwise

Figure 3.8: Evaluation diagram for examples 1, 2 and 3.

3.2 Examples 31

Figure 3.9: Linear B-Spline associated to the knot sequence T = {0,1,2}.

Figure 3.10: Linear B-Spline associated to the knot sequence T = {0,0,1}.

Example 2. Let T = {0,0,1} and p = 1.
We first compute the B-Splines of degrees 0

N0
0 = 0, ∀t ∈ R

N0
1 =

{
1, 0≤ t < 1
0, otherwise

The B-Splines of degree 1 is

N1
0 =

t−0
0−0

N0
0 +

1− t
1−0

N0
1

which yields

N1
0 =

{
1− t, 0≤ t < 1
0, otherwise

32 Chapter 3. B-Splines

Figure 3.11: Linear B-Spline associated to the knot sequence T = {0,1,1}.

Figure 3.12: Evaluation diagram for examples 4 and 5.

Example 3. Let T = {0,1,1} and p = 1.
We first compute the B-Splines of degrees 0

N0
0 =

{
1, 0≤ t < 1
0, otherwise

N0
1 = 0, ∀t ∈ R

The B-Splines of degree 1 is

N1
0 =

t−0
1−0

N0
1 +

1− t
1−1

N0
2

which yields

N1
0 =

{
t, 0≤ t < 1
0, otherwise

Example 4. Let T = {0,0,1,1} and p = 1.
In the examples 2 and 3 we computed the linear B-Splines associated to the knots sequences
{0,0,1} and {0,1,1}. Then we get immediatly that the knots sequens {0,0,1,1} will exactly
generate the same B-Splines, i.e.

N1
0 =

{
1− t, 0≤ t < 1
0, otherwise

N1
1 =

{
t, 0≤ t < 1
0, otherwise

3.2 Examples 33

Figure 3.13: Linear B-Splines associated to the knots sequence T = {0,0,1,1}.

Figure 3.14: Linear B-Splines associated to the knot sequence T = {0,0,1,2}.

Example 5. Let T = {0,0,1,2} and p = 1.
In the examples 2 and 1 we computed the linear B-Splines associated to the knots sequences
{0,0,1} and {0,1,2}. Then we get immediatly that the knots sequens {0,0,1,2} will exactly
generate the same B-Splines, i.e.

N1
0 =

{
1− t, 0≤ t < 1
0, otherwise

N1
1 =


t, 0≤ t < 1
2− t, 1≤ t < 2
0, otherwise

34 Chapter 3. B-Splines

Figure 3.15: Evaluation diagram for examples 6 and 7.

Figure 3.16: Quadratic B-Splines associated to the knots sequence T = {0,0,1,1}.

Example 6. Let T = {0,0,1,1} and p = 2.
The linear B-Splines were computed in the previous example. Then for degree 2, we get

N2
0 =

t−0
1−0

N1
0 +

1− t
1−0

N1
1

which leads to

N2
0 =

{
2(1− t)t, 0≤ t < 1
0, otherwise

Example 7. Let T = {0,0,1,2} and p = 2.
The linear B-Splines were computed in the examples 2 and 1. Then for degree 2, we get

N2
0 =

t−0
1−0

N1
0 +

2− t
2−0

N1
1

which yields

N2
0 =


2t− 3

2 t2, 0≤ t < 1
1
2(2− t)2, 1≤ t < 2
0, otherwise

Example 8. Let T = {0,0,1,2,3,3} and p = 1.

3.2 Examples 35

Figure 3.17: Quadratic B-Splines associated to the knots sequence T = {0,0,1,2}.

We first compute the B-Splines of degrees 0

N0
0 = 0, ∀t ∈ R

N0
1 =

{
1, 0≤ t < 1
0, otherwise

N0
2 =

{
1, 1≤ t < 2
0, otherwise

N0
3 =

{
1, 2≤ t < 3
0, otherwise

N0
4 = 0, ∀t ∈ R

The B-Splines of degree 1 are

N1
0 =

t−0
0−0

N0
0 +

1− t
1−0

N0
1

N1
1 =

t−0
1−0

N0
1 +

2− t
2−1

N0
2

N1
2 =

t−1
2−1

N0
2 +

3− t
3−2

N0
3

N1
3 =

t−2
3−2

N0
3 +

3− t
3−3

N0
4

36 Chapter 3. B-Splines

Figure 3.18: Linear B-Splines associated to the knots sequence T = {0,0,1,2,3,3}.

which gives

N1
0 =

{
1− t, 0≤ t < 1
0, otherwise

N1
1 =


t, 0≤ t < 1
2− t, 1≤ t < 2
0, otherwise

N1
2 =


t−1, 1≤ t < 2
3− t, 2≤ t < 3
0, otherwise

N1
3 =

{
t−2, 2≤ t < 3
0, otherwise

Example 9. Let T = {0,0,0,1,1,1} and p = 2.
We first compute the B-Splines of degrees 0

N0
0 = N0

1 = 0, ∀t ∈ R

N0
2 =

{
1, 0≤ t < 1
0, otherwise

N0
3 = N0

4 = 0, ∀t ∈ R

The B-Splines of degree 1 are

N1
0 =

t−0
0−0

N0
0 +

0− t
0−0

N0
1

N1
1 =

t−0
0−0

N0
1 +

1− t
1−0

N0
2

N1
2 =

t−0
1−0

N0
2 +

1− t
1−1

N0
3

N1
3 =

t−1
1−1

N0
3 +

1− t
1−1

N0
4

3.2 Examples 37

Figure 3.19: Linear B-Splines associated to the knots sequence T = {0,0,0,1,1,1}.

which leads to

N1
0 = 0, ∀t ∈ R

N1
1 =

{
1− t, 0≤ t < 1
0, otherwise

N1
2 =

{
t, 0≤ t < 1
0, otherwise

N1
3 = 0, ∀t ∈ R

The B-Splines of degree 2 are

N2
0 =

t−0
0−0

N1
0 +

1− t
1−0

N1
1

N2
1 =

t−0
1−0

N1
1 +

1− t
1−0

N1
2

N2
2 =

t−0
1−0

N1
2 +

1− t
1−1

N1
3

which leads to

N2
0 =

{
(1− t)2, 0≤ t < 1
0, otherwise

N2
1 =

{
2t(1− t), 0≤ t < 1
0, otherwise

N2
2 =

{
t2, 0≤ t < 1
0, otherwise

In this case, we recover the Bernstein polynomials of degree 2.

Exercise 3.1 Compute the B-Splines generated by the knots sequences:
- T = {0,0,0,1,2,2,3,4,5,5,5} with p = 2
- T = {0,1,2,2,3,4,5,5,6} with p = 2

38 Chapter 3. B-Splines

�

3.3 B-Splines properties
B-Splines have many interesting properties that are listed below. In general, most of the proofs are
done by induction on the B-Spline degree.

Proposition 3.3.1 B-splines are piecewise polynomial of degree p

Proof. We proceed by induction. When p = 0, B-Splines are either the 0 or the characteristic
functions, which are constant polynomials. For p = 1, the Cox-DeBoor formula shows that the
generated B-Splines are piecewise linear functions, because of the weights that multply the constant
functions (B-Splines of degree p = 0).
Now assume that B-Splines of degree p− 1 are piecewise polynomials of degree p− 1. Again
using the Cox-DeBoor formula, we see that the degree will be increased by 1 because of the linear
weights, on each sub-interval. This completes the proof. �

R The B-splines functions associated to open knots sequences without internal knots, i.e. the
length of the knots sequence is exactly 2p+2, are the Bernstein polynomials of degreep.

Proposition 3.3.2 — compact support. N p
j (t) = 0 for all t /∈ [t j, t j+p+1).

Proof. By taking a look at the triangular diagram 3.1 for the evaluation of the jth B-Spline of
degree p. We see that N p

j depends only on the B-Splines {N0
j ,N

0
j+1, · · · ,N0

j+p}. The laters are
exactly the characteristic functions on the intervals [ti, ti+1),∀i ∈ { j, j+ 1, · · · , j+ p}. Therefor,
N p

j (t) = 0, for all t /∈ [t j, t j+p+1). �

Proposition 3.3.3 If t ∈ [t j, t j+1), then only the B-splines {N p
j−p, · · · ,N

p
j } are non vanishing at t.

Proof. Using the last proposition, the support of N p
i is defined as supp

(
N p

i

)
= [ti, ti+p+1) for every

i ∈ { j− p, · · · , j}. Therefor, on the interval [t j, t j+1) =
⋂

j−p≤i≤ j
supp

(
N p

i

)
, only the B-Splines

{N p
j−p, · · · ,N

p
j } are non-zeros. �

Proposition 3.3.4 — non-negativity. N p
j (t)≥ 0, ∀t ∈ [t j, t j+p+1)

Proof. This can be proved by induction. It is true for p = 0, since all B-Splines are either 0 or the
characteristic function. Assume the property holds for p−1, using the Cox-DeBoor formula we
have:

N p
j =

x− t j

t j+p− t j
N p−1

j +
t j+p+1− x

t j+p+1− t j+1
N p−1

j+1

since, t ∈ [t j, t j+p+1), we have x−t j
t j+p−t j

≥ 0 and t j+p+1−x
t j+p+1−t j+1

≥ 0 whenever t j+p > t j and t j+p+1 > t j+1,
otherwise these terms are identicaly equal to 0, by convention.
On the other hand, N p−1

j ≥ 0 and N p−1
j+1 ≥ 0. Therefor there linear combination is also positive. �

Proposition 3.3.5 — Partition of unity. ∑N p
i (t) = 1,∀t ∈ R

R The previous sum ∑N p
i (t) has a meaning since for every t ∈ R, only p+ 1 B-Splines are

non-vanishing.

3.3 B-Splines properties 39

Proof. We prove this result by induction again. For p = 0, the property is true. Now let us assume
it is true for p−1.

Let j denotes the span of t. We know that ∑N p
i (t) =

j
∑

i= j−p
N p

i (t). Now, using the Cox-DeBoor

formula, we have

j

∑
i= j−p

N p
i (t) =

j

∑
i= j−p

(
t− ti

ti+p− ti
N p−1

i (t)+
ti+p+1− t

ti+p+1− ti+1
N p−1

i+1 (t)
)

by changing the summation index in the second part, we get

j

∑
i= j−p

N p
i (t) =

j

∑
i= j−p

t− ti
ti+p− ti

N p−1
i (t)+

j+1

∑
i= j−p+1

ti+p− t
ti+p− ti

N p−1
i (t)

On the other hand, we know that the only B-Splines of degree p−1 that are non-vanishing on the
interval [t j, t j+1) are {N p−1

j−p+1, · · · ,N
p−1
j }, meaning that N p−1

j−p = N p−1
j+1 = 0. Therefor,

j

∑
i= j−p

N p
i (t) =

j

∑
i= j−p+1

(
t− ti

ti+p− ti
+

ti+p− t
ti+p− ti

)
N p−1

i (t)

hence,

j

∑
i= j−p

N p
i (t) =

j

∑
i= j−p+1

N p−1
i (t)

Finaly, we use the induction assumtion to complete the proof. �

R For the sake of simplicity, we shall avoid using summation indices on linear expansion of
B-Splines.

Lemma 1

∑a jN
p
j = ∑

(
t j+p− t
t j+p− t j

a j−1 +
t− t j

t j+p− t j
a j

)
N p−1

j (3.2)

Proof. Using the Cox-DeBoor formula, we have

∑a jN
p
j = ∑

(
a j

t− t j

t j+p− t j
N p−1

j +a j
t j+p+1− t

t j+p+1− t j+1
N p−1

j+1

)
By changing the summation index in the second part of the right hand side, we get

∑a jN
p
j = ∑a j

t− t j

t j+p− t j
N p−1

j +∑a j−1
t j+p− t
t j+p− t j

N p−1
j

which yields

∑a jN
p
j = ∑

(
a j

t− t j

t j+p− t j
+a j−1

t j+p− t
t j+p− t j

)
N p−1

j

�

40 Chapter 3. B-Splines

Proposition 3.3.6 — Marsden’s idenity.

(x− y)p = ∑
j

ρ
p
j (y)N

p
j (x) (3.3)

where

ρ
p
j (y) =

j+p

∏
i= j+1

(ti− y) (3.4)

Proof. Seting a j := ρ
p
j (y) in the lemma 1, we get

∑ρ
p
j (y)N

p
j (x) = ∑

(
t j+p− x
t j+p− t j

ρ
p
j−1(y)+

x− t j

t j+p− t j
ρ

p
j (y)

)
N p−1

j (x)

on the other hand, by introducing α
p−1
j =

j+p−1
∏

i= j+1
(ti− y), we have

t j+p− x
t j+p− t j

ρ
p
j−1(y)+

x− t j

t j+p− t j
ρ

p
j (y) = α

p−1
j

(
t j+p− x
t j+p− t j

(t j− y)+
x− t j

t j+p− t j
(t j+p− y)

)
= (x− y)ρ p−1

j (y)

Therefor,

∑ρ
p
j (y)N

p
j (x) = (x− y)∑ρ

p−1
j (y)N p−1

j (x)

By repeating the same computation p−1 times (one can also use an induction for this), we get the
desired result. �

Thanks to Marsden’s identity and the proposition 3.3.3, we now are able to prove the local
linear independence of the B-Splines basis functions.

Proposition 3.3.7 — Local linear independence. On each interval [t j, t j+1), the B-Splines are
lineary independent.

Proof. On the interval [t j, t j+1), there are only p+1 non-vanishing B-Splines. On the other hand,
these B-Splines reproduce polynomials, thanks to the Marsden’s identity. Hence, {N p

j−p, · · · ,N
p
j }

are a basis for polynomials of degree at most p, and are therefor, lineary independent. �

R We will see in the Approximation theory part, that the B-Splines family has also a global
linear independence property.

3.4 Derivatives of B-Splines

The derivative of B-Splines can be computed reccursivly by deriving the formula 3.1, which gives

Proposition 3.4.1

N p
j
′
=

p
t j+p− t j

N p−1
j − p

t j+p+1− t j+1
N p−1

j+1 (3.5)

3.5 Problems 41

Proof. We prove this by induction on p.
For p = 1, N p−1

j and N p−1
j+1 are either 0 or 1, then N p

j
′ is either 1

t j+1−t j
or − 1

t j+2−t j+1
.

Now assume that 3.5, is true for p−1, where p > 1. Deriving the Cox-DeBoor formula leads to

N p
j
′
=

1
t j+p− t j

N p−1
j +

t− t j

t j+p− t j
N p−1

j
′

− 1
t j+p+1− t j+1

N p−1
j+1 +

t j+p+1− t
t j+p+1− t j+1

N p−1
j+1
′

Using the induction assumption on N p−1
j
′
and N p−1

j+1
′
and subtituting in the last equation yields

N p
j
′
=

1
t j+p− t j

N p−1
j − 1

t j+p+1− t j+1
N p−1

j+1

+
t− t j

t j+p− t j

(
p−1

t j+p−1− t j
N p−2

j − p−1
t j+p− t j+1

N p−2
j+1

)
+

t j+p+1− t
t j+p+1− t j+1

(
p−1

t j+p− t j+1
N p−2

j+1 −
p−1

t j+p+1− t j+2
N p−2

j+2

)
=

1
t j+p− t j

N p−1
j − 1

t j+p+1− t j+1
N p−1

j+1

+
p−1

t j+p− t j

t− t j

t j+p−1− t j
N p−2

j

+
p−1

t j+p− t j+1

(
t j+p+1− t

t j+p+1− t j+1
−

t− t j

t j+p− t j

)
N p−2

j+1

− p−1
t j+p+1− t j+1

t j+p+1− t
t j+p+1− t j+2

N p−2
j+2

Since,

t j+p+1− t
t j+p+1− t j+1

−
t− t j

t j+p− t j
=

t j+p− t
t j+p− t j

−
t− t j+1

t j+p+1− t j+1

we get

N p
j
′
=

1
t j+p− t j

N p−1
j − 1

t j+p+1− t j+1
N p−1

j+1

+
p−1

t j+p− t j

(
t− t j

t j+p−1− t j
N p−2

j +
t j+p− t
t j+p− t j

N p−2
j+1

)
− p−1

t j+p+1− t j+1

(
t− t j+1

t j+p− t j+1
N p−2

j+1 +
t j+p+1− t

t j+p+1− t j+2
N p−2

j+2

)
By applying the Cox-DeBoor formula for N p−1

j and N p−1
j+1 we get the desired result. �

Exercise 3.2 Show that the r-th derivative of N p
j is given by

N p
j
(r)

=
p

t j+p− t j
N p−1

j
(r−1)
− p

t j+p+1− t j+1
N p−1

j+1
(r−1)

�

3.5 Problems
TODO

4. Cardinal B-Splines

4.1 Cardinal B-Splines
Cardinal B-Splines play an important role in the approximation theory (multi-resolution approxima-
tion, . . .). In the sequel, we shall give a definition of the Cardinal B-Spline using the convolution
operator. Then, we will present some of the most important properties, at least needed when using
uniform B-Splines in a Finite Elements method.

Definition 4.1.1 A cardinal B-spline of zero degree, denoted by φ0, is the characteristic function
over the interval [0,1), i.e.,

φ0(t) :=
{

1, t ∈ [0,1)
0, otherwise

(4.1)

A cardinal B-Spline of degree p, p ∈ N, denoted by φp, is defined by convolution as

φp(t) = (φp−1 ∗φ0)(t) =
∫
R

φp−1(t− s)φ0(s) ds (4.2)

4.1 Cardinal B-Splines 43

Figure 4.1: Cardinal B-Splines of degrees 1,2,3 and 4

Example 1:
When p = 1, it is easy to show that

φ1(t) :=


t, t ∈ [0,1)
2− t, t ∈ [1,2)
0, otherwise

(4.3)

When p = 2, it is easy to show that

φ2(t) :=


1
2 x2, t ∈ [0,1)
1
2 +(x−1)− (x−1)2, t ∈ [1,2)
1
2 − (x−2)+ 1

2(x−2)2, t ∈ [2,3)
0, otherwise

(4.4)

In figure (Fig. 4.1), we plot the Cardinal B-Splines of degrees 1,2,3 and 4.

R The colored area under the graph of φ2 represents the average
∫ x

x−1 φ2(t)dt which is the value
φ3(x).

44 Chapter 4. Cardinal B-Splines

4.1.1 Cardinal B-Splines properties
Let φp be a cardinal B-Spline of degree p, p ∈ N. The following properties can be proved by
induction on the B-Spline degree p.

Theorem 4.1.1 — Minimal support. the support of φp is [0, p+1]

Theorem 4.1.2 — Positivity. φp(s)≥ 0,∀s ∈ [0, p+1]

Theorem 4.1.3 φp ∈ C p−1

Theorem 4.1.4 φp is a piecewise-polynomial of degree p at each interval [i, i+1],∀i∈{0,1, . . . , p}

The sequence {0,1,2, . . . , p} is known as the breaks of the cardinal B-Spline of degree p.

Theorem 4.1.5 ∀t ∈ [0, p+1] and p≥ 1, we have

φ̇p(t) = φp−1(t)−φp−1(t−1) (4.5)

Theorem 4.1.6 — Symmetry. φp is symmetric on the interval [0, p+1], i.e.

φp(t) = φp(p+1− t), ∀t ∈ [0, p+1] (4.6)

The following theorem was proved in 1972 by both Cox and Deboor separatly.

Theorem 4.1.7 — Cox-Deboor. ∀t ∈ [0, p+1] and p≥ 1, we have

φp(t) =
t
p

φp−1(t)+
p+1− t

p
φp−1(t−1) (4.7)

Proof. Let φ
p
i (t) := φp(t− i),∀t ∈ [0, p+ 1]. We will proof the result by induction. Since both

sides vanish at t = 0, we will use the equivalence to the formula for the derivative 4.1.5.

φ
p−1
0 −φ

p−1
1 =

1
p

(
φ

p−1
0 −φ

p−1
1

)
+

[
t
p

(
φ

p−2
0 −φ

p−2
1

)
+

p+1− t
p

(
φ

p−2
1 −φ

p−2
2

)]
(4.8)

The last term of the previous relation, can be written as

p−1
p

[(
t

p−1
φ

p−2
0 +

p− t
p−1

φ
p−2
1

)
−
(

t−1
p−1

φ
p−2
1 +

p− (t−1)
p−1

φ
p−2
2

)]
(4.9)

Now, if we assume that the recursion is valid up to p−1, then the last terms is equal to

p−1
p

(
φ

p−1
0 −φ

p−1
1

)
(4.10)

�

4.1 Cardinal B-Splines 45

Interval Taylor coefficients

[0,1] 0 1 α0,1

[1,2] 1 −1 α1,1

Table 4.1: The linear Cardinal B-Spline Taylor coefficients.

Interval Taylor coefficients

[0,1] 0 0 1
2 α0,2

[1,2] 1
2 1 −1 α1,2

[2,3] 1
2 −1 1

2 α2,2

Table 4.2: The quadratic Cardinal B-Spline Taylor coefficients.

For any Cardinal B-Spline of degree p, we denote by α
p
i =

(
α

p
0,i,α

p
1,i, . . . ,α

p
p,i

)
the sequence

of its mononial coefficients on [i, i+1]

φp(t) = α
p
0,i +α

p
1,it

2 + . . .+α
p
p,it

p, ∀t ∈ [i, i+1] (4.11)

When i, j /∈ [0, p], we set α
p
i, j

Theorem 4.1.8 — Taylor Coefficients.

α
p
l,k =

k
p

α
p−1
l,k +

1
p

α
p−1
l−1,k +

p+1− k
p

α
p−1
l,k−1−

1
p

α
p−1
l−1,k−1 (4.12)

Proof. Using the Cox-Deboor theorem (4.1.7), if x = i+ t where t ∈ [0,1], we have

x
p

φ
p−1(x) =

(
k
p
+

t
p

)(
α

p−1
0,i−1 +α

p−1
1,i−1t2 + . . .+α

p−1
p,i−1t p

)
p+1− x

p
φ

p−1(x−1) =
(

p+1− k
p

− t
p

)(
α

p−1
0,i−1 +α

p−1
1,i−1t2 + . . .+α

p−1
p,i−1t p

)
Adding the last expressions together, we get the the expected relation for α

p
p,i. �

Corollary 4.1.9 — Cardinal B-Splines evaluation using pp-form. Thanks to the theorem
(4.1.8), we can compute analyticaly the Taylor coefficients for low B-Splines order (Tables 4.1,
4.2 and 4.3).

Theorem 4.1.10 — Inner product.∫
R

φ
(r)
p (t)φ (s)

q (t + k) dt = (−1)r
φ
(r+s)
p+q+1(p+1+ k) = (−1)s

φ
(r+s)
p+q+1(q+1− k) (4.13)

46 Chapter 4. Cardinal B-Splines

Interval Taylor coefficients

[0,1] 0 0 0 1
6 α0,3

[1,2] 1
6

1
2

1
2 −1

2 α1,3

[2,3] 2
3 0 −1 1

2 α2,3

[3,4] 1
6 −1

2
1
2 −1

6 α1,3

Table 4.3: The cubic Cardinal B-Spline Taylor coefficients.

4.2 Cardinal B-Spline series
4.2.1 Scaled and translated Cardinal B-Splines

From now on, h > 0 will denote the mesh step. hZ is the uniform grid of width h. The scaled and
translated Cardinal B-Spline of degree p is defined by

φi,h,p(x) := φp

(x
h
− i
)

(4.14)

The support of φi,h,p is [i, i+ p+1]h. We introduce the sequence (ti)i∈Z, where ti = ih, ∀i ∈ Z. The
following result is another version of the Cox-Deboor theorem (4.1.7).

Theorem 4.2.1 — Cox-Deboor. ∀t ∈ R and p≥ 1, we have

φi,h,p(t) =
t− ti

ti+p− ti
φi,h,p−1(t)+

ti+p+1− t
ti+p+1− ti+1

φi+1,h,p−1(t) (4.15)

with φi,h,p(t) = 0, ∀t /∈ [ti, ti+p+1].

Proof. Using the definition of the scaled and translated Cardinal B-Spline and the theorem (4.1.7),
we have

φi,h,p(t) =
t− ih

hp
φi,h,p−1(t)+

h(p+1+ i)− t
hp

φi+1,h,p−1(t) (4.16)

The result is straightforward, using the fact that ti+p− ti = ti+p+1− ti+1 = hp. �

4.2.2 Cardinal Splines
Definition 4.2.1 — Cardinal Spline. A Cardinal Spline, or cardinal B-Spline serie, of degree
p on the grid hZ is the linear combination

∑
k∈Z

ckφk,h,p (4.17)

In figure (Fig. 4.2), we plot all non-vanishing Cardinal B-Splines on the interval [2,3]. In figure
(Fig. 4.3), we plot a Cardinal B-Spline serie.

Proposition 4.2.2 — Marsden’s identity.

∀x, t ∈ R,(x− t)p = ∑
k∈Z

mk,h,p(t)φk,h,p(x) (4.18)

where mk,h,p(t) = hpΠ
p
i=1

(
k+ i− t

h

)
Proof. �

4.3 Problems 47

Figure 4.2: Non-vanishing Cardinal B-Splines on the interval [2,3]

Figure 4.3: Example of a cubic Cardinal B-Spline serie.

Proposition 4.2.3 — Partition of unity.

1 = ∑
k∈Z

φk,h,p(t), ∀t ∈ R (4.19)

Proposition 4.2.4 — Linear independence. For any element [i, i+1]h, the Cardinal B-Splines(
φk,h,p

)
i−p≤k≤i are linearly independent.

Proposition 4.2.5 — Representation of Polynomials.

Proof. �

4.3 Problems
TODO

5. B-Splines curves

5.1 B-Splines curves
Let (Pi)06i6n ∈ Rd be a sequence of control points. Following the same approach as for Bézier
curves, we define B-Splines curves as

Definition 5.1.1 — B-Spline curve. The B-spline curve in Rd associated to T = (ti)06i6n+p+1
and (Pi)06i6n is defined by :

C (t) =
n

∑
i=0

N p
i (t)Pi

R The use of open knot vector leads to an interpolating curve at the endpoints.

5.1 B-Splines curves 49

Figure 5.1: Quadratic B-Spline curve using the knot vector T = {0,0,0,1,1,1}

Figure 5.2: Cubic B-Spline curve using the knot vector T = {0,0,0,0,1,1,1,1}

Figure 5.3: Quadratic B-Spline curve using the knot vector T = {0,0,0, 1
4 ,

1
2 ,

3
4 ,1,1,1}

50 Chapter 5. B-Splines curves

Figure 5.4: Quadratic B-Spline curve using the knot vector T = {0,0,0, 1
4 ,

1
2 ,

1
2 ,

3
4 ,1,1,1} with a

cusp.

Examples

Example 1. We consider quadratic B-Spline curve on the knot vector T = {0,0,0,1,1,1}. This
leads to a quadratic Bézier curve.

Example 2. We consider cubic B-Spline curve on the knot vector T = {0,0,0,0,1,1,1,1}. This
leads to a cubic Bézier curve.

Example 3. We consider quadratic B-Spline curve on the knot vector T = {0,0,0, 1
4 ,

1
2 ,

3
4 ,1,1,1}.

We remark that
- the curve starts at P0 and ends at P5,
- the curve does not pass through the points {Pi, 1≤ i≤ 4},
- the tangent directions to the curves at its extremeties are parallel to P1−P0 and P5−P4,
- the curve is localy C 2 and only C 1 at the knots {1

4 ,
1
2 ,

3
4}.

Example 4. We consider quadratic B-Spline curve on the knot vector T = {0,0,0, 1
4 ,

1
2 ,

1
2 ,

3
4 ,1,1,1},

where the knot 1
2 has a multiplicity of 2.

We remark that
- adding a new knot increases the number of control points by 1,
- the curve starts at P0 and ends at P6 and passes through the point P3,
- the curve does not pass through the points {Pi, 1≤ i≤ 5, i 6= 3},
- the tangent directions to the curves at its extremeties are parallel to P1−P0 and P6−P5,
- the tangent directions to the curves at P3 are parallel to P3−P2 and P4−P3,
- the curve is localy C 2 inside each subinterval, C 1 at the knots {1

4 ,
3
4} and only C 0 at 1

2 ,
where there is a cusp.

5.1 B-Splines curves 51

Figure 5.5: Quadratic B-Spline curve using the knot vector T = {0,0,0, 1
4 ,

1
2 ,

1
2 ,

3
4 ,1,1,1} without a

cusp.

Figure 5.6: B-Spline curve of degree 6 using the knot vector T = {0,0,0,0,0,0,0,1,1,1,1,1,1,1}

Example 5. We consider quadratic B-Spline curve on the knot vector T = {0,0,0, 1
4 ,

1
2 ,

1
2 ,

3
4 ,1,1,1},

where the knot 1
2 has a multiplicity of 2.

We remark that although the knot 1
2 has a multiplicity of 2, the curve is visualy smooth. In

fact, it still has the same properties as in the previous example, except that the curve is more
than just C 0 at the double knot 1

2 , but not C 1. To be more specific, it has a regularity of G 1

at the knot 1
2 .

Example 6. In this example, we show the impact of increasing the degree vs increasing the number
of internal knots.
Given a control polygon defined by the points {Pi, 0≤ i≤ 6, we use first a Bézier repre-
sentation of degree 6 (Fig. 5.6) and a quadratic B-Spline curve (Fig. 5.7) to approach the
broken lines defined by the control polygon. As we can see, the use of more knots gives a
better approximation. We shall give a proof for this result in the futur.

Properties of B-Splines curves

We have the following properties for a B-spline curve:
• If n = p, then C is a B’ezier-curve,
• C is a piecewise polynomial curve,
• The curve interpolates its extremas if the associated multiplicity of the first and the last knot

are maximum (i.e. equal to p+1),

52 Chapter 5. B-Splines curves

Figure 5.7: Quadratic B-Spline curve using the knot vector T = {0,0,0,0.2,0.4,0.6,0.8,1,1,1}

• Invariance with respect to affine transformations,
• B-Spline curves are affinely invariant; i.e. the image curve Φ(∑n

i=0 PiN
p
i) of a B-Spline curve,

by an affine mapping Φ, is the B-Spline curve having (Φ(Pi))0≤i≤n as control points and the
same knot vector,

• strong convex-hull property: if t j ≤ t ≤ t j+1, then C (t) is inside the convex-hull associated
to the control points P j−p, · · · ,P j,

• local modification : moving P j affects C (t), only in the interval [t j, t j+p+1],
• the control polygon is a linear approximation of the curve. We will see later that the control

polygon converges to the curve under knot insertion and degree elevation (with different
speeds).

• Variation diminishing: no plane intersects the curve more than the control polygon.

5.2 Derivtive of a B-spline curve

Using the derivative formula for B-spline, we can compute the derivative of a B-Spline curve:

C ′(t) =
n

∑
i=0

(
N p

i
′
(t)Pi

)
=

n

∑
i=0

(
p

ti+p− ti
N p−1

i (t)Pi−
p

ti+1+p− ti+1
N p−1

i+1 (t)Pi

)
=

n

∑
i=0

p
ti+p− ti

N p−1
i (t)Pi−

n+1

∑
i=1

p
ti+p− ti

N p−1
i (t)Pi−1

= ∑
i

N p−1
i (t)

p
ti+p− ti

(Pi−Pi−1)

= ∑
i

N p−1
i (t)

p
ti+p− ti

∇Pi

where we introduced the first backward difference operator ∇Pi := Pi−Pi−1.

Examples

Example 1. we consider a quadratic B-Spline curve with the knot vector T = {000 2
5

3
5 111}. We

have C (t) = ∑
4
i=0 N2

i
′
(t)Pi, then

C ′(t) = ∑
i

N1
i (t)Qi

5.3 Rational B-Splines (NURBS) curves 53

where
Q0 = 5{P2−P1} Q1 =

10
3
{P3−P2}

Q2 =
10
3
{P4−P3} Q3 = 5{P5−P4}

the B-splines {N1
i , 0≤ i≤ 3} are associated to the knot vector T ∗ = {00 2

5
3
5 11}.

5.3 Rational B-Splines (NURBS) curves
Let ω = (ωi)06i6n be a sequence of non-negative reals. The NURBS functions are defined by a
projective transformation:

Definition 5.3.1 — NURBS function. The i-th NURBS of order k, associated to the knot vector
T and the weights ω , is defined by

Rp
i =

ωiN
p
i

∑
j

ω jN
p
j

(5.1)

R Notice that when the weights are equal to 1 the NURBS are B-splines.

R NURBS functions inherit most of B-splines properties. Remark that in the interior of a knot
span, all derivatives exist, and are rational functions with non vanishing denominator.

Definition 5.3.2 — NURBS curve. The NURBS curve of degree p associated to the knot vector
T , the control points (Pi)06i6n and the weights ω , is defined by

C (t) =
n

∑
i=0

Rp
i (t)Pi (5.2)

R [NURBS using perspective mapping] Notice that a NURBS curve in Rd can be described as a
NURBS curve in Rd+1 using the control points:

Pω
i = (ωiPi,ωi) (5.3)

This remark is used for the evaluation and also to extend most of the B-Splines fundamental
geometric operations to NURBS curves.

R NURBS functions allow us to model, exactly, much more domains than B-splines. In fact, all
conics can be exactly represented with NURBS.

5.3.1 Modeling conics using NURBS
In this section, we will show how to construct an arc of conic, using rational B-splines. Let
us consider the following knot vector : T = {000 111}, the generated B-splines are Bernstein
polynomials. The general form of a rational Bézier curve of degree 2 is:

C (t) =
ω0N2

0 (t)P0 +ω1N2
1 (t)P1 +ω2N2

2 (t)P2

ω0N2
0 (t)+ω1N2

1 (t)+ω2N2
2 (t)

(5.4)

54 Chapter 5. B-Splines curves

ω = 0 line
0 < ω < 1 ellipse arc

ω = 1 parabolic arc
ω > 1 hyperbolic arc

Table 5.1: Modeling conics using NURBS. Possible values of ω and the corresponding conic arc.

Figure 5.8: Quarter circle using a quadratic Bézier curve.

R Because of the multiplicity of the knots 0 and 1, the curve C is linking the control point P0 to
P2.

Let us consider the case ω1 = ω3 = 1, in which case the curve will have the following form:

C (t) =
N2

0 (t)P0 +ωN2
1 (t)P1 +N2

2 (t)P2

N2
0 (t)+ωN2

1 (t)+N2
2 (t)

(5.5)

Depending on the value of ω the resulting Bézier arc is either a line, ellipse, parabolic or hyperbolic
arcs (Tab. 5.1).

Examples

Example 1. (Quarter circle) A quarter circle can be described by a quadratic Bézier arc with the
control points (Tab. 5.2).
In figure Fig. 5.8, we plot the resulting NURBS curve and its control polygon.

Example 2. (Circular arc 120) A circular arc of length 120 can be described with a quadratic
Bézier curve, using the control points given in Tab. 5.3.
In figure Fig. 5.9, we plot the resulting NURBS curve and its control polygon.

Example 3. (half circle) In this example we show how to construct half of a circle using a cubic
Bézier arc. The control points are given in the Tab. 5.4.
In figure Fig. 5.10, we plot the resulting NURBS curve and its control polygon.

5.3 Rational B-Splines (NURBS) curves 55

Pi ωi

0 (1,0) 1
1 (1,1) 1√

2
2 (0,1) 1

Table 5.2: Control points and their associated weights to model a quarter circle quadratic Bézier
arc.

Figure 5.9: A circular arc of length 120 using a quadratic Bézier curve.

Pi ωi

0 (cos(π

6),
1
2) 1

1 (0,2) 1
2

2 (−cos(π

6),
1
2) 1

Table 5.3: Control points and their associated weights to model a circular arc of length 120.

Pi ωi

0 (1,0) 1
1 (1,2) 1

3
2 (−1,2) 1

3
3 (−1,0) 1

Table 5.4: Control points and their associated weights to model a half circle using a cubic Bézier
arc.

56 Chapter 5. B-Splines curves

Figure 5.10: Half circle as a cubic Bézier curve.

5.3 Rational B-Splines (NURBS) curves 57

Figure 5.11: Circle as four Bézier curves described by a B-Spline curve using the knot vector
T = {0,0,0, 1

4 ,
1
4 ,

1
2 ,

1
2 ,

3
4 ,

3
4 ,1,1,1}

Pi ωi

0 (1,0) 1
1 (1,1) 1√

2
2 (0,1) 1
3 (−1,1) 1√

2
4 (−1,0) 1
5 (−1,−1) 1√

2
6 (0,−1) 1
7 (1,−1) 1√

2
8 (1,0) 1

Table 5.5: Control points and their associated weights to model a circle using 4 quadratic Bézier
arcs.

Example 4. (Circle as four arcs) One can draw a circle using four quadratic Bézier arcs, 9 control
points (Tab. 5.5) and the knot sequence T = {000, 1

4 ,
1
4 ,

1
2 ,

1
2 ,

3
4 ,

3
4 ,111}.

In figure Fig. 5.11, we plot the resulting NURBS curve and its control polygon.
Example 5. (Circle as three arcs) One can draw a circle using three quadratic Bézier arcs of length

120, 7 control points (Tab. 5.6) and the knot sequence T = {000, 1
3

1
3 ,

2
3 ,

2
3 ,111}.

In figure Fig. 5.12, we plot the resulting NURBS curve and its control polygon.

58 Chapter 5. B-Splines curves

Figure 5.12: Circle as three Bézier curves described by a B-Spline curve using the knot vector
T = {000, 1

3
1
3 ,

2
3 ,

2
3 ,111}

Pi ωi

0 (cos(π

6),
1
2) 1

1 (0,2) 1
2

2 (−cos(π

6),
1
2) 1

3 (−2cos(π

6),−1) 1
2

4 (0,−1) 1
5 (2cos(π

6),−1) 1
2

6 (cos(π

6),
1
2) 1

Table 5.6: Control points and their associated weights to model a circle using 3 quadratic Bézier
arcs of length 120.

5.4 Fundamental geometric operations 59

5.4 Fundamental geometric operations
When designing complex CAD models we usually start from simple geometries then manipulate
them using different algorithms that are now well established. For example, one may need to have
more control on a curve, by adding new control points. This can be done in two different ways:

• insert new knots
• elevate the polynomial degree

In general, one way need to use both approaches.

R Notice that these two operations keep the B-Spline curve unchanged.

In the sequel, we will give two algorithms for knot insertion and degree elevation. In fact, there
are many algorithms that implement these operations, but we shall only consider one for each
operation.

5.4.1 Knot insertion
Assuming an initial B-Spline curve defined by:

• its degree p
• knot vector T = (ti)06i6n+p+1
• control points (Pi)06i6n

We are interested in the new B-Spline curve as the result of the insertion of the knot t, m times
(with a span j, i.e. t j 6 t < t j+1).
After such operation, the degree is remain unchanged, while the knot vector is enriched by t, m
times. The aim is then to compute the new control points (Qi)06i6n+m

For this purpose we use the DeBoor algorithm:

n := n+m (5.6)

p := p (5.7)

T := {t0, .., t j, t, ..., t︸ ︷︷ ︸
m

, t j+1, .., tn+k} (5.8)

Qi := Qm
i (5.9)

where,

Q0
i = Pi (5.10)

Qr
i = α

r
i Qr−1

i +(1−α
r
i)Q

r−1
i−1 (5.11)

with,

α
r
i =


1 i6 j− p+ r−1

t−ti
ti+p−r+1−ti

j− p+ r 6 i6 j−m
0 j−m+16 i

(5.12)

Examples

Example 1. We consider a cubic B-Spline curve on the knot vector T = {0,0,0,0,1,1,1,1}.
In this example, we first insert the knot 1

2 with a multiplicity of 1. The result is given in Fig.
5.13.
In figures 5.14 and 5.15, we chose a multplicity of 2 and 3 for the new knot. As a result, we
notice

60 Chapter 5. B-Splines curves

Figure 5.13: A cubic Bézier curve and the new B-Spline curve after inserting the knot 1
2 with a

multiplicity of 1.

Figure 5.14: A cubic Bézier curve and the new B-Spline curve after inserting the knot 1
2 with a

multiplicity of 2.

Figure 5.15: A cubic Bézier curve and the new B-Spline curve after inserting the knot 1
2 with a

multiplicity of 3.

5.4 Fundamental geometric operations 61

Figure 5.16: A cubic Bézier curve and the new B-Spline curve after inserting the knots {1
4 ,

1
2 ,

3
4}.

Figure 5.17: A cubic Bézier curve and the new B-Spline curve after inserting the knots { i
10 , i ∈

{1,2, · · · ,9}}.

• whenever we insert a new knot, a new control point appears,
• the curve is unchanged after knot insertion,
• Q1 ∈ [P0P1] and Q3 ∈ [P2P3].
• in Fig. 5.15, the curve pass through the point Q3, which corresponds to the knot 1

2 with
a multiplicity of 3. In this case, we subdivided the initial Bézier curve into two Bézier
curves.

Example 2. We consider again a cubic B-Spline curve on the knot vector T = {0,0,0,0,1,1,1,1}.
In this example, we show the impact of inserting knots on the control polygon. As we see in
figures 5.16 and 5.17, the control polygon converges to the initial curve. We shall prove this
result in the Approximation theory part.

For more details about such topic, we refer to [10].

62 Chapter 5. B-Splines curves

5.4.2 Degree elevation
In the sequel, we shall restrict our study to the case of open knot vectors. There are also many
algorithms for degree elevation of a B-Spline curve. In the sequel, we will be using the one
developped by Huang et al. [13].
Since some knots may be duplicated, we shall assume that the breakpoints are denoted by {t?i , 0≤
i≤ s}, in which case the knot vector has the following form

T = {t?0 , ..., t?0︸ ︷︷ ︸
m0

, t?1 , ..., t
?
1︸ ︷︷ ︸

m1

, . . . , t?s−1, ..., t
?
s−1︸ ︷︷ ︸

ms−1

, t?s , ..., t
?
s︸ ︷︷ ︸

ms

,} (5.13)

Elevating the degree by m will lead to the new description (the curve does not change):

n := n+ sm (5.14)

p := p+m (5.15)

T := {t?0 , ..., t?0︸ ︷︷ ︸
m0+m

, t?1 , ..., t
?
1︸ ︷︷ ︸

m1+m

, . . . , t?s−1, ..., t
?
s−1︸ ︷︷ ︸

ms−1+m

, t?s , ..., t
?
s︸ ︷︷ ︸

ms+m

,} (5.16)

Qi := Q̃
0
i (5.17)

where the control points Q̃
0
i are given by the following algorithm,

1. we define

βi =
i

∑
l=1

ml ∀16 i6 s−1 (5.18)

αi =
i

∏
l=1

p− l
p+m− l

∀16 i6 p−1 (5.19)

and set

P̃
0
i = P̃i (5.20)

2. compute the (scaled) differential coefficients P̃
l
i , for l > 0 as

P̃
l
i =

 P̃
l−1
i+1−P̃

l−1
i

ti+p−ti+l
, ti+p > ti+l

0 , ti+p = ti+l

(5.21)

3. compute for all j ∈ {0, · · · , p}

P̃
j
0 (5.22)

4. compute for all l ∈ {1, · · · ,s−1} and i ∈ {p+1−ml, · · · , p}

P̃
i
βl

(5.23)

5. compute for all j ∈ {0, . . . , p}

Q̃
j
0 =

j

∏
l=1

p+1− l
p+1+m− l

P̃
j
0 (5.24)

5.4 Fundamental geometric operations 63

6. compute for all l ∈ {1, . . . ,s−1} and i ∈ {p+1−ml, . . . , p}

Q̃
j
βl+ml =

j

∏
l=1

p+1− l
p+1+m− l

P̃
j
βl

(5.25)

7. compute for all l ∈ {1, . . . ,s−1} and i ∈ {1, . . . ,m}

Q̃
p
βl+ml+i = Q̃

(p)
βl+ml (5.26)

8. compute Q̃
0
i

Note that there exist other algorithms which expand the curve into a Bézier curve, then elevate
the degree using Bernstein polynomials, finally come back to a description using B-splines. For
more details, we refer to [16, 18]. The one given in [13] is more efficient and much more simple
to implement. We can also use a more sophisticated version of this algorithm to insert new knots
while elevating the degree.

64 Chapter 5. B-Splines curves

Figure 5.18: A cubic B-Spline curve before and after raising the polynomial degree by 1.

Figure 5.19: A cubic B-Spline curve before and after raising the polynomial degree by 2.

Examples

Example 1. In this example we consider a cubic B-Spline curve with the following knot vector
T = {0,0,0,0, 1

2 ,
1
2 ,1,1,1,1}.

In Fig. 5.18, we plot the curve before and after raising the B-Spline degree by 1.
We notice that

• in opposition to the knot insertion, elevating the degree by 1 adds two control points
rather than 1.

• the curve is unchanged after degree elevation,
• Q1 ∈ [P0P1] and Q6 ∈ [P4P5].

Example 2. In this example we show the convergence of the control polygon under degree eleva-
tion. In figures 5.19, 5.20 and 5.21, we plot the control polygon after raising the degree by
2,4 and 8 respectively.

5.5 Problems
TODO

5.5 Problems 65

Figure 5.20: A cubic B-Spline curve before and after raising the polynomial degree by 4.

Figure 5.21: A cubic B-Spline curve before and after raising the polynomial degree by 8.

6. Historical Notes

References: [16], [3], [4, 5, 6, 17, 19]
Add a general introduction
Cost evalution of different math functions: ADD, MUL, EXP, SIN, COS, etc

II
7 Divided differences 69
7.1 Lagrange interpolation
7.2 Hermite interpolation
7.3 Divided differences
7.4 Problems

8 Schoenberg space of Spline functions 74
8.1 Basic Splines
8.2 Spline functions
8.3 Dual functionals
8.4 Problems

9 Spline Approximation 79
9.1 Introduction
9.2 Examples
9.3 Quasi-Interpolation
9.4 Global approximation
9.5 Approximation with Quasi-Interpolation
9.6 Approximation power of Splines
9.7 Problems

10 Historical Notes . 93

Approximation theory for
B-Splines

7. Divided differences

7.1 Lagrange interpolation
Let us consider the interpolation problem for a function f on a given set of (distinct) points
{x0, · · · ,xn}. It is well known that the Lagrange interpolating polynomial of degree n writes

p(x;x0, . . . ,xn) =
n

∑
i=0

f (xi)Li(x), where Li(x) =
n

∏
j=0
j 6=i

x− x j

xi− x j
, i = 0, . . . ,n (7.1)

The evaluation of the Lagrange interpolator can be done with different methods. The standard one
is known as Aitken method. Assume we want to interpolate a function f on the points {x0, · · · ,x3}.
We start by computing:

p(x;x0,x1) =
1

x1− x0

∣∣∣∣ f (x0) x0− x
f (x1) x1− x

∣∣∣∣
p(x;x0,x2) =

1
x2− x0

∣∣∣∣ f (x0) x0− x
f (x2) x2− x

∣∣∣∣
p(x;x0,x3) =

1
x3− x0

∣∣∣∣ f (x0) x0− x
f (x3) x3− x

∣∣∣∣
p(x;x0,x1,x3) =

1
x3− x1

∣∣∣∣p(x;x0,x1) x1− x
p(x;x0,x3) x3− x

∣∣∣∣
p(x;x0,x1,x2) =

1
x2− x1

∣∣∣∣p(x;x0,x1) x1− x
p(x;x0,x2) x2− x

∣∣∣∣
Then the value of the interpolation polynomial of degree 3 at x is given by

p(x;x0,x1,x2,x3) =
1

x3− x2

∣∣∣∣p(x;x0,x1,x2) x2− x
p(x;x0,x1,x3) x3− x

∣∣∣∣

70 Chapter 7. Divided differences

The complexity of the Aitken method is O(n2) which is expensive, since we know that the Horner
algorithm is only about O(n).

7.1.1 Newton form and Neville’s algorithm
Another interesting form is the so called Newtonian form of p and writes

p(x) =
n

∑
i=0

ai

i−1

∏
j=0

(x− x j) (7.2)

Let us explain how to use the form 7.2 to have a fast evaluation of the interpolant polynomial at a
given point x.
First, we define the polynomial p j,k as the interpolant polynomials of degree k at the sites
{x j,x j+1, · · · ,x j+k}, i.e. p j,k(xi) = f (xi) for i ∈ { j, j+1, · · · , j+ k}. Where we assume the sites to
be ordered and distincts. Therefor, these polynomials exist and are unique.
In the linear case, we have

p0,1(x) = f (x0)+(x− x0)
f (x1)− f (x0)

x1− x0
= a0 +(x− x0)a1 (7.3)

for some coefficients a0 and a1. In this case, we have

a0 = f (x0) (7.4)

and

a1 =
f (x1)− f (x0)

x1− x0
(7.5)

a1 is called the first order divided difference of X := { f (x0), · · · , f (xn)}. In the quadratic case,
we can write

p0,2(x) = p0,1(x)+(x− x0)(x− x1)a2 (7.6)

where

a2 =
f (x2)− p0,1(x2)

(x2− x0)(x2− x1)
(7.7)

a2 is called the second order divided difference of X . We notice that, we can write, for a given
coefficient a,

p j,k(x) = p j,k−1(x)+(x− xi) . . .(x− xi+k−1)a

The coefficient a is the k-th order divided difference of X and will be denoted [xi, · · · ,xi+k] f .
Since,

p j,k(x) =
x j+k− x
x j+k− x j

p j−1,k−1(x)+
x− x j

x j+k− x j
p j,k−1(x), j ∈ {0, . . . , p− k}

we get the following result, by comparing the coefficients of the monomial xk,

[x j, . . . ,x j+k] f :=
1

x j+k− x j

(
[x j+1, . . . ,x j+k] f − [x j, . . . ,x j+k−1] f

)
(7.8)

The Neville’s algorithm is then given as follows
1. set [x j] f := f (x j), for all j ∈ {0, . . . , p},
2. use 7.8 to compute [x j, . . . ,x j+k] f , for all j ∈ {0, . . . , p− k} and k ∈ {1, . . . , p}

7.2 Hermite interpolation 71

Horner algorithm

We give here a modified version for the Horner algorithm based on the Newtonian form.
1. set q := ap

2. for every k ∈ {p−1, p−2, · · · ,0}, we update q using q := ak +(x− xk)q
3. the evaluation of the polynom at x is then given by p0,p(x) := q

A quick study of the complexity leads to p multiplications and 2p additions and substractions.

7.2 Hermite interpolation

In the Hermite interpolation, not only the values of a function are given, but also some of its
successive derivatives. Given the set of interpolations points X := {x0, · · · ,xn}, we construct
the set of distinct points X? := {x?0, · · · ,x?s}, for which we associate a multiplicity m j > 0 with
∑

s
j=0 m j = n+1. Let c j,l be given constants. The Hermite interpolation problems is

Definition 7.2.1 — Hermite interpolation. Find a polynomial Hn ∈Πn such that

H(l)
n (x?j) = c j,l 0≤ l ≤ m j−1 and 0≤ j ≤ s (7.9)

It is easy to prove that there exist a unique polynomial Hn that solves the Hermite interpolation
problem.
In the sequel, we shall define the set of constraints by reordering the coefficients c j,l such that
(d j)

n
j=0 := {c j,l,0≤ j≤ s,0≤ l ≤m j−1}. Now we can state the general theorem for the Newton’s

method:

Theorem 7.2.1 — Newton’s method. There exist unique constants a0, · · · ,an for which the
polynomials

P0(x) = a0

P1(x) = a0 +a1(x− x0)

P2(x) = a0 +a1(x− x0)+a2(x− x0)(x− x1)

. . .

Pn(x) = a0 +a1(x− x0)+ . . .+an
n−1
∏
j=0

(x− x j)

(7.10)

are solutions of the Hermite interpolation problems for the sets of points {x0}, {x0,x1}, . . . ,
{x0, · · · ,xn} and given data (d j)

n
j=0.

R The Hermite interpolation is a generalization of both Lagrange interpolation and the Taylor
interpolation. Recall that Taylor interpolant of a smooth function f ∈ C n([a,b]) is defined by

Tn(x) := f (x0)+ f ′(x0)(x− x0)+ . . .+ f (n)(x0)
(x− x0)

n

n!
(7.11)

These are the two extreme cases of Hermite interpolation where for the Lagrange interpolation
the interpolation points are all distinct, while for Taylor interpolation there all equal.

7.3 Divided differences

72 Chapter 7. Divided differences

Definition 7.3.1 — Divided Differences (G. Kowalewski 1932). For a set of points (not
necessarily ordered) X := {x0, · · · ,xn}, and a function f , we define the n-th divided difference
of f by

[x0, · · · ,xn] f := an (7.12)

where an is the coefficient of xn of the polynomial which interpolates f at x0, · · · ,xn as shown in
the Newtonian form 7.2.

Now let’s go back to the divided differences operator. After giving additional examples, we
shall present some properties.

Examples

Example 1. [x0] f = f (x0)

Example 2. [x0,x1] f =
f (x0)− f (x1)

x0−x1
if x0 6= x1

Example 3. [x0,x0] f = f ′(x0)
Because of the symmetry of the Newton form we have

Proposition 7.3.1 [x0, · · · ,xn] f is symmetric in x0, · · · ,xn.

From the Newton form, we also deduce

Proposition 7.3.2 [x0, · · · ,xn] f is constant if f is a polynomial of degree ≤ n, and zero for a
polynomial of degree < n.

Use the Taylor polynomial we have

Proposition 7.3.3 [x0, · · · ,x0] f = 1
n! f (n)(x0).

Proposition 7.3.4 [x0, · · · ,xn] f is a linear combinaition of the derivatives f (l)(xi), 0≤ l ≤mi−1,
where mi is the multiplicity of the point xi in the set X .

Proposition 7.3.5 if f ∈ C n([a,b]), a≤ xi ≤ b, 0≤ i≤ n, then :

[x0, · · · ,xn] f =
1
n!

f (n)(ξ), for some ξ ∈ [a,b]

Proposition 7.3.6 [x0, · · · ,xn] f is continuous at the sites in X , if the derivatives of f of proper
orders are continuous at the considered site.

Proposition 7.3.7 if x0 6= xn, we have

[x0, · · · ,xn] f =
1

xn− x0
{[x1, · · · ,xn] f − [x0, · · · ,xn−1] f} (7.13)

Proposition 7.3.8 — Leibniz’s Formula.

[x0, · · · ,xn](f g) =
n

∑
i=0

[x0, · · · ,xi](f) [xi, · · · ,xn](g)

Proposition 7.3.9 If f (n−1) is absolutely continuous, and if not all xi coincide, we have

[x0, · · · ,xn] f =
∫ 1

0
dt1
∫ t1

0
dt2 · · ·

∫ tn−1

0
f (n)(x0 +h1t1 +h2t2 + · · ·+hntn)dtn

where we denote hi = xi+1− xi, i ∈ {0, · · · ,n−1}.

7.4 Problems 73

Corollary 7.3.10

|[x0, · · · ,xn] f | ≤
1
n!
‖ f (n)‖∞

This shows, that the functional f → [x0, · · · ,xn] f is continuous on C n[a,b].

Proposition 7.3.11 If all xi are distinct, then

[x0, · · · ,xn] f =
∫ b

a
f (n)(t)[x0, · · · ,xn]

(
(·− t)n−1

+

(n−1)!

)
dt

This gives a representation of the functional [x0, · · · ,xn] in term of the Peano kernel.

7.4 Problems
TODO

8. Schoenberg space of Spline functions

8.1 Basic Splines
In the previous chapters, we introduced the B-Splines through the Cox-DeBoor formula. In this sec-
tion, we shall give a more specific definition, using the Divided Differences operator.

8.2 Spline functions 75

Definition 8.1.1 — M-Spline. Let X = {x0, · · · ,xp+1} a non-decreasing sequence of p+ 2
points such that x0 6= xp+1. The M-Spline will be defined in term of the following Divided-
Difference :

M(x) = M(x;X) := M(x;x0, · · · ,xp+1) = (p+1)[x0, · · · ,xp+1](·− x)p
+ (8.1)

The points forming the set X , are called knots, and X is said to be a knot vector.

Proposition 8.1.1 M(x) = 0,∀x /∈ [x0,xp+1]

Proposition 8.1.2 M(x)> 0,∀x ∈ (x0,xp+1)

Proposition 8.1.3 M
n! is the Peano kernel of the divided-difference at the set X = {x0, · · · ,xp+1}.

Then, for any f ∈W p+1
1 , we have,

[x0, · · · ,xp+1] f =
∫ +∞

−∞

f (p+1)(t)M(t)dt

Proposition 8.1.4
∫ +∞

−∞
M(t)dt = 1

Proposition 8.1.5 If p≥ 1, we have the recurrence formula,

M(x;x0, · · · ,xp+1) =
p+1

p

(
x− x0

xp+1− x0
M(x;x0, · · · ,xp)+

xp+1− x
xp+1− x0

M(x;x1, · · · ,xp+1)

)
(8.2)

The B-Splines are then defined in terms of M-Splines as

N(x;x0, · · · ,xp+1) =
xp+1− x0

p+1
M(x;x0, · · · ,xp+1) (8.3)

In this case we recover the Cox-DeBoor formula

N(x;x0, · · · ,xp+1) =
x− x0

xp− x0
N(x;x0, · · · ,xp)+

xp+1− x
xp+1− x1

N(x;x1, · · · ,xp+1) (8.4)

In fact, one can see the property 8.1.4 of the M-Splines as a normalization of the basic splines, such
that the integral is one. Another normalization is to have the patition unity, which is given by the
B-Splines.

8.1.1 Smoothness of a B-Spline
Proposition 8.1.6 Suppose that x? ∈ X := {x0, . . . ,xp+1} occurs m times in the knot sequence
in X . If 1 ≤ m ≤ p+1, then N(r) is continuous at x? for all r ∈ {0, . . . , p−m}, while N p−m+1 is
discontinuous at x?.

Proof. TODO �

8.2 Spline functions
Splines are piecewise polynomials defined on the real line. We shall require that on each compact
interval, they consist of a small number of non-vanishing polynomial pieces.
Let T ? = {t?i , 06 i6 s} be a finite strictly increasing sequence of points of R. A function S on R is
a spline of degree p, p> 0 with the breakpoints T ? if on each interval (t?i , t

?
i+1), it is a polynomial

of degree 6 p. At every breakpoint t?i , S and its derivatives (which are also splines) are defined by
continuity whenever it is possible. For example, splines of order one are step functions, those of
order two are broken lines.
At every breakpoint t?i , a spline S shall have a smoothness ri, which is defined as the following:

76 Chapter 8. Schoenberg space of Spline functions

• ri :=−1 if S is discontinuous at t?i , otherwise,
• ri is such that S(j) is well defined and continuous at t?i for all 0≤ j ≤ ri and 1≤ i≤ s−1.

R We will not consider the case of discontinuous splines at internal breakpoints. Meaning that
ri ≥ 0.

R ki := p− ri is called the defect and is the number of degrees of freedom of S at t?i

In the sequel, we shall consider the case of the interval I = [a,b], where a := t?0 and b = t?s .

Definition 8.2.1 — Schoenberg space. Given a set of breakpoints T ? as defined previously
and a sequence of integers r := {ri, 16 i6 s−1}. The space of functions which consists of all
splines S of degree 6 p with breakpoints contained in T ? and of smoothness > ri at t?i is called
Schoenberg space, which we denote S r

p (T
?).

An example of a spline function is the truncated power, if i > 0 and τ ∈ T ?,

(x− τ)i
+ :=

{
(x− τ)i , x≥ 0
0, x < τ

(8.5)

Exercise 8.1 Show that the truncated powers (x− t?i)
j
+ ∈S r

p (T
?) , for all j ∈ {ri, · · · , p}. �

Using the truncated powers, one can construct a basis for the Schoenberg space. However, this basis
will not have the compact support property. We shall see in the next sections, that the B-Splines
form a basis for the Schoenberg space. There are different methods to prove this fact, the one that
we will follow is based on the DeBoor-Fix quasi-interpolation approach.

8.3 Dual functionals 77

8.3 Dual functionals
In this section, we are interested in the construction of dual functionals (λi)0≤i≤n for a family of

B-Splines
(

N p
j

)
0≤ j≤n

such that

λi(N
p
j) = δi j, ∀i, j ∈ {0, . . . ,n} (8.6)

We recall the Mardsen’s identity 3.3:

(x− y)p = ∑
j

ψ j,p(y)N
p
j (x)

where

ψ j,p(y) =
j+p

∏
i= j+1

(ti− y) (8.7)

Proposition 8.3.1 — representation of polynomials. Let g ∈Πp, then

g(x) =
n

∑
j=0

µ
p
j (g)N

p
j (x) (8.8)

where

µ
p
j (g) =

1
p!

p

∑
r=0

(−1)p−r
ψ

(r)
j,p(τ j)g(p−r)(τ j) (8.9)

for some τ j ∈ [a,b].

Proof. Let g ∈Πp and τ j ∈ [a,b]. Using the Taylor expansion (or Taylor form of the polynomial)
we get

g(x) =
p

∑
r=0

1
(p− r)!

(x− τ j)
p−rg(p−r)(τ j) (8.10)

but using the Mardsen identity for y = τ j, we have

(x− τ j)
p−r =

n

∑
j=0

(−1)p−r (p− r)!
p!

ψ
(r)
j,p(τ j)N

p
j (x)

by subtituting this expression in Eq. 8.10, we get

g(x) =
p

∑
r=0

1
(p− r)!

n

∑
j=0

(−1)p−r (p− r)!
p!

ψ
(r)
j,p(τ j)N

p
j (x)g

(p−r)(τ j)

which leads to

g(x) =
n

∑
j=0

1
p!

p

∑
r=0

(−1)p−r
ψ

(r)
j,p(τ j)g(p−r)(τ j)N

p
j (x)

�

Next, we give a general representation of any spline function in terms of B-Splines.

78 Chapter 8. Schoenberg space of Spline functions

Proposition 8.3.2 — representation of splines. Let g ∈Sp(T), then

g(x) =
n

∑
j=0

λ
p
j (g)N

p
j (x) (8.11)

where

λ
p
j (g) =

1
p!



p
∑

r=0
(−1)p−rψ

(r)
j,p(τ j)D

p−r
+ g(τ j) ,τ j = t j

p
∑

r=0
(−1)p−rψ

(r)
j,p(τ j)g(p−r)(τ j) , t j < τ j < t j+p+1

p
∑

r=0
(−1)p−rψ

(r)
j,p(τ j)D

p−r
− g(τ j) ,τ j = t j+p+1

(8.12)

Proof. Let τ j ∈ [t j, t j+p+1]. We also denote by m j the integer such that τ j ∈ I j := [tm j , tm j+1]. There
are three cases to consider: either τ j is inside the interval I j or is equal to one of its bounds. For the
moment, let us consider the case where tm j < τ j < tm j +1.
Since s|I j ∈Πp, we use the representation of polynomials to get

s|I j =
m j

∑
i=m j−p

µ
p
i (s|I j)N

p
i

on the other hand, since j≤m j ≤ j+ p, we have m j− p≤ j≤m j and using the local independence
of B-Splines on I j, we get

λ
p
j (s) = µ

p
j (s|I j)

The other cases are treated in the same way by replacing the derivatives on τ j by the right (left)
derivatives if τ j = t j (or τ j = t j+p+1). �

R If we denote by µ j the multiplicity of τ j in {t j+1, · · · , t j+p}, then ψ
(r)
j,p(τ j)= 0 for all r≤ µ j−1.

Therefor, the summation index in 8.12 starts from µ j rather than 0.

Let T be a knot sequence associated to a set of breakpoints T ? for which each internal knot has a
multiplicity mi. From Prop 8.1.6, we know that a B-Spline N j has p−mi continuous derivatives at
a breakpoint t?i with a multiplicity mi, which lies in the support of N j.

Proposition 8.3.3 — B-Splines as a basis for Schoenberg space. TODO

Proof. TODO �

8.4 Problems
TODO

9. Spline Approximation

9.1 Introduction
The aim of this chapter is to construct a spline approximation of a function f , in terms of B-Splines
as

L f (x) =
n

∑
j=0

λi(f)N p
j (x) (9.1)

Depending on the nature of the functionals λi the approximation will be global (interpolation and
least square approximation) or local (quasi-interpolation).

9.2 Examples
9.2.1 Piecewise linear interpolation

We consider in this example, a set of increasing points (which will represent our grid points)
x0 < x1 < · · ·< xm. We also denote a = x0 and b = xm. We first construct a knot vector from the
grid points, by duplicating the first and the last points

T1 := {x0,x0,x1, . . . ,xm−1,xm,xm}

We consider the set of linear B-Splines associated to T1, denoted by
(

N1
j

)m

j=0
.

Proposition 9.2.1 Let f ∈ C [a,b]. The spline defined as

I1 f (x) =
m

∑
j=0

f (x j)N1
j (x) (9.2)

satisfies the interpolation condition, i.e.

I1 f (xi) = f (xi) ∀i ∈ {0, . . . ,m}

80 Chapter 9. Spline Approximation

Exercise 9.1 Prove the previous proposition. �

9.2.2 Variation diminishing spline approximation
In the sequel, we present an approximation that preserves the bounds, monotonicity and convexity.
In addition, it reproduces all linear piecewise polynomials.

Definition 9.2.1 — Variation diminishing approximation. Let f ∈ C [a,b] and p a positive
integer. Moreover, we consider a p+1-regular knot sequence T = {t0, · · · , tn+p+1}, with tp = a
and tn+1 = b. We also define the knot averages, also known as the Greville points,

t?j =
1
p
(t j+1 + . . .+ t j+p) (9.3)

The Variation diminishing spline approximation of degree p to f , on the knot sequence T , is
defined as

V f (x) =
n

∑
j=0

f (t?j)N
p
j (x) (9.4)

R The first knot t0 and the last one tn+p+1 do not appear in the definition of the Greville points.

R If all internal knots occur less than p+1, i.e. the Schoenberg space Sp(T)⊂ C [a,b], then

t?0 < t?1 < .. . < t?n

Preserving the bounds

Lemma 2 If g =
n
∑
j=0

c jN
p
j is an element of the Schoenberg space Sp(T), then

min
0≤ j≤n

c j ≤ g≤ max
0≤ j≤n

c j

Proof. Since the B-Splines are positive, we have

min
0≤ j≤n

c j

(
n

∑
j=0

N p
j

)
≤ g≤ max

0≤ j≤n
c j

(
n

∑
j=0

N p
j

)

we conclude by using the fact that the B-Splines forms a partition of unity. �

Proposition 9.2.2 Let f ∈ C [a,b] such that m≤ ‖ f‖∞ ≤ for some real numbers m and M. Then

m≤ ‖V f‖∞ ≤ (9.5)

Proof. Since V f (x) =
n
∑
j=0

f (t?j)N
p
j (x) and for all 0≤ j ≤ n we have m≤ f (t?j)≤M. We conclude

by using the previous lemma. �

9.2 Examples 81

Preserving the monotonicity

Lemma 3 If g =
n
∑
j=0

c jN
p
j is an element of the Schoenberg space Sp(T), then

1. if ∀ j 0≤ j ≤ n−1, c j ≤ c j+1 then g is increasing
2. if ∀ j 0≤ j ≤ n−1, c j ≥ c j+1 then g is decreasing

Proof. We shall assume p≥ 1, since the case p = 0 is straightforward. We shall also give the proof
only for the first point, the second case is treated in a similar way. Let x ∈ [a,b], we have

g′(x) = ∑
j

∇c jN
p−1
j (x)

with ∇c j := c
t j+p−t j

(c j− c j−1).
But since ∇c j ≥ 0, then g′(x)≥ 0. Therefor g is increasing. �

Proposition 9.2.3 If f ∈ C [a,b] is increasing (decreasing) then V f is increasing (decreasing).

Proof. We use the fact that the coefficients in the Variation diminishing approximation are the
evaluation of the function f at the Greville points. The order of these coefficients will be given by
the monotonicity of the function f . Then we use the previous lemma to conclude. �

Preserving the convexity

Lemma 4 If g =
n
∑
j=0

c jN
p
j is an element of the Schoenberg space Sp(T), then g is convex if

∇c j ≤ ∇c j+1 ∀0≤ j ≤ n−1

Proof. We shall consider two cases
1. g is differentiable everywhere.

Then we know that

g′(x) = ∑
j

∇c jN
p−1
j (x)

But since ∇c j ≤ ∇c j+1 ∀0 ≤ j ≤ n− 1, and using the lemma 3, we get that g′ is an
increasing function, which means that g is convex.

2. Now assume there exists only one point z where g is not differentiable and let x0 < x1 <2 be
three points in [a,b]. We shall prove that

g(x1)−g(x0)

x1− x0
≤ g(x2)−g(x1)

x2− x1

The case where z /∈ (x0,x2) is covered by the previous point. The interesting cases are the
one for which z ∈ [x0,x2]. Assume for the moment that x0 < z < x1. Then using the fact that

g(x1)−g(x0)

x1− x0
=

g(z)−g(x0)

z− x0

z− x0

x1− x0
+

g(x1)−g(z)
x1− z

x1− z
x1− x0

we get

g(x1)−g(x0)

x1− x0
≤ g(x1)−g(z)

x1− z

82 Chapter 9. Spline Approximation

but since g is convex on the right of z, we have also

g(x1)−g(z)
x1− z

≤ g(x2)−g(x1)

x2− x1

then

g(x1)−g(x0)

x1− x0
≤ g(x1)−g(z)

x1− z
≤ g(x2)−g(x1)

x2− x1

Now if z = x1, we use the mean value theorem and the fact that f ′ is increasing at the interior
of each sub-interval.
The other cases and the one with several discontinuities is treated in a similar way.

�

Proposition 9.2.4 If f ∈ C [a,b] is convex then V f is convex.

Proof. If f is convex then we have

f (t?j)− f (t?j−1)

t?j − t?j−1
≤

f (t?j+1)− f (t?j)

t?j+1− t?j

∇c j ≤ ∇c j+1 ∀0≤ j ≤ n−1

where c j = f (t?j). We conclude by using the previous lemma. �

9.3 Quasi-Interpolation 83

9.3 Quasi-Interpolation

In this section, we give a general procedure to construct quasi-interpolant for B-Splines and we
provide some examples.

9.3.1 General recipe for quasi-interpolants
In the sequel, we shall give a general procedure to construct local approximation on a Schoenberg
space. Let f ∈ C [a,b]. We will denote the quasi-interpolant by Q and assume that

Q f =
n

∑
j=0

λi(f)N p
j (9.6)

1. We consider a span index j,
2. We assume that there exist µ and ν such that the interval I := [tµ , tν]⊂ [a,b] and the interior

of I
⋂
[t j, t j+p+1] is not empty.

3. We choose a local approximation method PI and determine an approximation PI f to f on I
such that

PI f =
ν−1

∑
i=µ−p

biN
p
i (9.7)

4. We set the coefficient λ j f in Eq. 9.6 to b j

The last point makes sense only if µ− p≤ j ≤ ν−1, which is true since it is equivalent to having
j+1≤ ν and ν ≤ j+ p. But this is simply a consequence of the second point.
It is important to notice that the global representation of polynomials and splines are just a
consequence of the local case. The following lemma states this idea.

Lemma 5 If Q is constructed using the previous procedure, then for an integer l ≤ p, if PI

reproduces the polynomial space Πl(I) the quasi-interpolant Q reproduces also all polynomials of
degree l on [a,b], i.e.

PIg = g ∀g ∈Πl(I) ⇒Qg = g ∀g ∈Πl (9.8)

Moreover, if PI reproduces the splines on I then it reproduces the splines on [a,b], i.e.

PIg = g ∀g ∈Sp(T, I) ⇒Qg = g ∀g ∈Sp(T) (9.9)

Proof. TODO �

9.3.2 Examples
In the following examples, we assume that all interior knots are distincts.

Piecewise linear interpolation

In this case, we can define I := [t j, t j+1] and

PI f = f (t j)N1
j−1 + f (t j+1)N1

j

which gives the global approximation

Q f = ∑
j

f (t j)N1
j (9.10)

84 Chapter 9. Spline Approximation

3-point quadratic quasi-interpolation

We consider I := [t j+1, t j+2] and the local spline space S2(T, I) := span
(
N2

i , j−1≤ i≤ j+1
)
.

On I we take three points
x j

0 = t j+1

x j
1 =

t j+1+t j+2
2

x j
2 = t j+2

The local approximation is defined as

PI f =
j+1

∑
i= j−1

biN2
i (9.11)

In order to find the coefficients bi, we need to solve the linear system

PI f (x j
k) = f (x j

k), k ∈ {0,1,2} (9.12)

In the next section, we shall show how to compute these coefficients. For the moment, we will give
the global approximation in terms of the functionals λ j

λ j f =


f (t0) , j = 0
−1

2 f (x j
0)+2 f (x j

1)−
1
2 f (x j

2) ,1≤ j ≤ n−1
f (tn+1) , j = n

(9.13)

5-point cubic quasi-interpolation

We consider I := [t j+1, t j+3] and the local spline space S3(T, I) := span
(
N3

i , j−2≤ i≤ j+2
)
.

On I we take five points

x j
0 = t j+1

x j
1 =

t j+1+t j+2
2

x j
2 = t j+2

x j
3 =

t j+2+t j+3
2

x j
4 = t j+3

The local approximation is defined as

PI f =
j+2

∑
i= j−2

biN3
i (9.14)

In order to find the coefficients bi, we need to solve the linear system

PI f (x j
k) = f (x j

k), k ∈ {0,1,2,3,4} (9.15)

The global approximation in terms of the functionals λ j

λ j f =



f (t3) , j = 0

− 1
18

(
−5 f (x j

0)+40 f (x j
1)−24 f (x j

2)+8 f (x j
3)− f (x j

4)
)

, j = 1

−1
6

(
f (x j

0)−8 f (x j
1)+20 f (x j

2)−8 f (x j
3)+ f (x j

4)
)

,2≤ j ≤ n−2

− 1
18

(
− f (x j

0)+8 f (x j
1)−24 f (x j

2)+40 f (x j
3)−5 f (x j

4)
)

, j = n−1

f (tn+1) , j = n

(9.16)

9.3 Quasi-Interpolation 85

9.3.3 Computing the coefficients functionals
In the sequel, we shall explain how to compute the coefficients λ j through the example of the
3-point quadratic quasi-interpolant.
We will be looking for λ j in the general form

λ j : f 7→ ω0 f (x j
0)+ω1 f (x j

1)+ω2 f (x j
2)

By taking f to be one of the B-Splines {N2
j−1,N

2
j ,N

2
j+1} we get the linear system

λ jN2
j−1 = ω0N2

j−1(x
j
0) + ω1N2

j−1(x
j
1) + ω2N2

j−1(x
j
2)

λ jN2
j = ω0N2

j (x
j
0) + ω1N2

j (x
j
1) + ω2N2

j (x
j
2)

λ jN2
j+1 = ω0N2

j+1(x
j
0) + ω1N2

j+1(x
j
1) + ω2N2

j+1(x
j
2)

(9.17)

On the other hand, by construction we have λ jN2
i = δi j. Therefor, the left hand side of our system is

known. Now what remains is to have numerical values for the B-Splines evaluation on {x j
0,x

j
1,x

j
2}.

Since I = [t j+1, t j+2] only the knots t j+1 and t j+2 are seen by the space of quadratic polynomials on
I. We can then extend theses knots with any knots we want to get a set of B-Splines that can be
easily evaluated (let’s say analyticaly). The simplest way is to consider the Bernstein polynomials,
meaning we take the knot sequence {t j+1, t j+1, t j+1, t j+2, t j+2, t j+2}. In this case, we get the linear
system

ω0B2
0(0)+ω1B2

0(
1
2)+ω2B2

0(1) = 0
ω0B2

1(0)+ω1B2
1(

1
2)+ω2B2

1(1) = 1
ω0B2

2(0)+ω1B2
2(

1
2)+ω2B2

2(1) = 0
(9.18)

which gives
0 = ω0 + 1

4 ω1

1 = 1
2 ω1

0 = 1
4 ω1 + ω2

(9.19)

Therefor
ω0 = −1

2
ω1 = 2
ω2 = −1

2

(9.20)

86 Chapter 9. Spline Approximation

9.4 Global approximation
9.4.1 Interpolation

Given the set of interpolations points X := {x0, · · · ,xn} and data Y := {y0, · · · ,yn}, we aim to find
a spline s such that yi = s(xi) . The Spline interpolation problems is

Definition 9.4.1 — Spline interpolation. Find a spline s :=
n
∑
j=0

c jN
p
j ∈Sp(T) such that

s(xi) = yi 0≤ i≤ n (9.21)

In a matrix form, the Spline interpolation problem writes

Mc = y (9.22)

where c is the unkown vector of the spline coefficients,

c =


c0
c1
...

cn


M is the collocation matrix given by

M =


N p

0 (x0) . . . N p
n (x0)

N p
0 (x1) . . . N p

n (x1)
... . . .

...
N p

0 (xn) . . . N p
n (xn)

 (9.23)

while y is the given data

y =


y0
y1
...

yn


Notice that when interpolating a function f , the given data will be yi := f (xi).
In general the linear system given by the Eq. 9.22 is not always solvable. The following result
by Whitney-Schoenberg gives a necessary and sufficient condition to ensure that the interpolation
problem has a unique solution.

Theorem 9.4.1 The collocation matrix is nonsingular if and only if the diagonal elements are
positive, i.e.

N p
i (xi)> 0 ∀i ∈ {0, . . . ,n} (9.24)

This condition is also equivalent to

ti < xi < ti+p+1 ∀i ∈ {0, . . . ,n} (9.25)

9.4 Global approximation 87

Exercise 9.2 Show that the Greville points fullfill the Whitney-Schoenberg condition Eq. 9.24.
�

9.4.2 Histopolation
Another interesting way to approximate a function, is to preserve the integrals between given
points, rather than the value of the function on these points. Given the set of interpolations points
X := {x0, · · · ,xn+1} and a continuous function f , the histopolation problem writes

Definition 9.4.2 — Spline histopolation. Find a spline s :=
n
∑
j=0

c jN
p
j ∈Sp(T) such that

∫ xi+1

xi

s dx =
∫ xi+1

xi

f dx 0≤ i≤ n (9.26)

In a matrix form, the Spline histopolation problem writes

Mc = y (9.27)

where c is the unkown vector of the spline coefficients,

c =


c0
c1
...

cn


M is the histopolation matrix given by

M =


∫ x1

x0
N p

0 dx . . .
∫ x1

x0
N p

n dx∫ x2
x1

N p
0 dx . . .

∫ x2
x1

N p
n dx

... . . .
...∫ xn+1

xn
N p

0 dx . . .
∫ xn+1

xn
N p

n dx

 (9.28)

while y is the given data

y =


∫ x1

x0
f dx∫ x2

x1
f dx
...∫ xn+1

xn
f dx



Theorem 9.4.2 The histopolation matrix is nonsingular if and only if

ti < xi < ti+p+1 ∀i ∈ {0, . . . ,n} (9.29)

Proof. TODO �

Histopolation using M-Splines

Rather than using the B-Splines for the histopolation problem, one can use the M-Splines. In this
case, the histopolation matrix given in Eq. 9.28 can be computed easily using the following result.

88 Chapter 9. Spline Approximation

Proposition 9.4.3 For every 0≤ i≤ n and 0≤ j ≤ n, we have

∫ xi+1

xi

Mp
j (t) dt =

j−1

∑
k=0

(
N p

k (xi)−N p
k (xi+1)

)
(9.30)

Proof. Integrating the relation d
dt N p

k (t) = Mp
k (t)−Mp

k+1(t) on the interval [xi,xi+1], we have

N p
k (xi+1)−N p

k (xi) =
∫ xi+1

xi

(
Mp

k (t)−Mp
k+1(t)

)
dt

summing the last equation for k = 0 to k = j−1, we get

j−1

∑
k=0

(
N p

k (xi+1)−N p
k (xi)

)
=
∫ xi+1

xi

j−1

∑
k=0

(
Mp

k (t)−Mp
k+1(t)

)
dt

=
∫ xi+1

xi

(
Mp

0 (t)−Mp
j (t)
)

dt

hence,

∫ xi+1

xi

Mp
j (t) dt =

j−1

∑
k=0

(
N p

k (xi)−N p
k (xi+1)

)
�

R The last result gives an optimized implementation for the assembly of the histopolation matrix,
since the right hand side term can be computed by accumulating the summation for each j.

9.4.3 Least-square approximation
In the sequel, we consider a set of points X := {x0, · · · ,xm} where m ≥ n and given data Y :=
{y0, · · · ,ym}. The least square problem writes

Definition 9.4.3 — Spline least-square approximation. Find a spline s :=
n
∑
j=0

c jN
p
j ∈Sp(T)

such that

min
g∈Sp(T)

m

∑
i=0

(g(xi)− yi)
2 (9.31)

where (wi)
m
i=0 is a set of positive weights.

Lemma 6 The problem 9.31 is equivalent to the linear least square problem

min
c∈Rn
‖Mc−b‖2 (9.32)

where Mi j =
√

wiN
p
j (xi) and bi =

√
wiyi.

Proof. TODO �

Lemma 7 The matrix MT M is symmetric and nonsingular.

Proof. TODO �

9.4 Global approximation 89

Proposition 9.4.4 The problem 9.32 has a solution given by

MT Mc = MT b (9.33)

The solution is unique if M has linearly independent columns.

Proof. TODO �

Theorem 9.4.5 The problem 9.32 has a unique solution if and only if we can find a sub-sequence
(xil)

n
l=0 such that

N p
l (xil) 6= 0 ∀l ∈ {0, . . . ,n} (9.34)

Proof. TODO �

90 Chapter 9. Spline Approximation

9.5 Approximation with Quasi-Interpolation

In this section, we are interested in local linear methods to construct an approximation of a given
function f . This means that each functional λi will be a linear functional that depends only on the
values of f on the support of N p

i .
In the sequel, we will assume that f ∈ C−1[a,b] and we consider a knot vector such that tp = a and
tn=1 = b. We first start by giving some definitions.

Definition 9.5.1 Let S⊂ [a,b] be a nonempty set. A linear functional λ : C−1[a,b] 7→R is said
to be supported on S if

λ (f) = 0, ∀ f ∈ C−1[a,b] such that f |S = 0 (9.35)

Definition 9.5.2 The quasi-interpolant Q is called a local quasi-interpolants if
1. each λi is supported on the interval Ii, where

Ii := [ti, ti+p+1]
⋂
[a,b] (9.36)

2. the quasi-interpolant Q reproduces Πl , for some l ∈ [0, p], i.e.

Q f (x) = f (x), ∀x ∈ [a,b] and ∀ f ∈Πl (9.37)

Definition 9.5.3 A local quasi-interpolant Q is bounded in a Lq-norm, with 1≤ q≤∞, if there
is a constant CQ such that for each λi we have

∀ f ∈ C−1[a,b], |λi f | ≤CQh
− 1

q
i ‖ f‖Lq(Ii) (9.38)

with hi = max
l∈Di

tl+1− tl , with Di := [max(i, p+1)],min(i+ p,n)].

Lemma 8 Suppose that f ∈ Lq([tp, tn+1]) for some q, with 1 ≤ q ≤ ∞ and there exists a set of
strictly increasing integers {mi1 , · · · ,mi2}, with tp ≤ tmi1

and tmi2+r ≤ tn+1 for some positive integer
r and integers i1 and i2. Then(

i2

∑
j=i1

‖ f‖q
Lq([tm j ,tm j+r])

) 1
q

≤ r
1
q ‖ f‖Lq([tp,tn+1]) (9.39)

Proof. TODO �

Theorem 9.5.1 — Local estimation. Let Q be a bounded local quasi-interpolant in an Lq-norm,
with 1≤ q≤ ∞. Let l and p be integers with 0≤ l ≤ p. Suppose tm < tm+1 for some p≤ m≤ n
and let f ∈W l+1

q (Jm) with

Jm := [tm−p, tm+p+1]
⋂
[a,b]

Then

‖ f −Q f‖Lq([tm,tm+1]) ≤
(2p+1)l+1

l!
(1+CQ)hl+1

m ‖ f (l+1)‖Lq(Jm) (9.40)

where hm = max
m−p≤i≤m+p,[ti,ti+1]⊂Jm

ti+1− ti

9.5 Approximation with Quasi-Interpolation 91

Proof. We recall that for l ≥ 0, f is a continuous function. Let x ∈ [tm, tm+1). Using lemma 2 and
the fact that Q is bounded in Lq-norm, we have

|Q f (x)| ≤ max
m−p≤ j≤m

|λ j f | ≤ max
m−p≤ j≤m

CQh
− 1

q
j ‖ f‖Lq(I j)

But tm+1− tm ≤ max
m−p≤ j≤m

h j and Jm =
⋃

m−p≤ j≤m
I j, we get

‖Q f‖Lq([tm,tm+1]) ≤CQ‖ f‖Lq(Jm) (9.41)

Now let g be any polynomial of degree l, i.e. g ∈Πl . Since Q reproduces all polynomials of degree
l, we have

‖ f −Q f‖Lq([tm,tm+1]) ≤ ‖ f −g‖Lq([tm,tm+1])+‖Q(g− f)‖Lq([tm,tm+1])

But since [tm, tm+1]⊂ Jm, using Eq. 9.41 we get

‖ f −Q f‖Lq([tm,tm+1])(1+CQ)‖ f −g‖Lq(Jm)

Now let us choose g to be the Taylor polynomial of degree l with τ = max(tm−p,a). Byt taking
r = 0 in refTODO we get

‖ f −g‖Lq(Jm) ≤
(2p+1)l+1

l!
hl+1

m ‖ f (l+1)‖Lq(Jm) (9.42)

Therefor

‖ f −Q f‖Lq([tm,tm+1])(1+CQ)
(2p+1)l+1

l!
hl+1

m ‖ f (l+1)‖Lq(Jm)

�

Theorem 9.5.2 — Global estimation. Let Q be a bounded local quasi-interpolant in an Lq-
norm, with 1 ≤ q ≤ ∞. Let l and p be integers with 0 ≤ l ≤ p. For all f ∈W l+1

q ([a,b]) we
have

‖ f −Q f‖Lq([a,b]) ≤
(2p+1)l+1+ 1

q

l!
(1+CQ)hl+1‖ f (l+1)‖Lq([a,b]) (9.43)

where h = max
p≤i≤n

ti+1− ti

Proof. Use the local estimation theorem and the lemma 8 gives the desired result. �

9.5.1 Quasi-interpolation and reproduction of polynomials
In order to use the previous results, one still needs to show that a quasi-interpolant reproduces
polynomials of a given degree l. In the sequel, we shall give conditions to find the degree l.

Proposition 9.5.3 We consider a set of n+1 basis functions for Πl , given by

{φ j,0, . . . ,φ j,l}, j ∈ {0, . . . ,n}, 0≤ l ≤ p (9.44)

and we consider their B-Splines representations as

φi, j =
n

∑
k=0

ci jkN p
k (9.45)

A linear quasi-interpolant Q reproduces Πl if the corresponding linear functionals satisfy

λ j(φi j) = c ji j, j ∈ {0, . . . ,n}, i ∈ {0, · · · , l} (9.46)

92 Chapter 9. Spline Approximation

Proof. TODO �

The next proposition gives a sufficient condition for a quasi-interpolant to reporoduce the
Schoenberg space.

Proposition 9.5.4 The linear quasi-interpolant Q reproduces the whole spline space if
1. Q reproduces Πl
2. each linear functional λ j is supported on one knot interval

[t+m j
, t−m j+1]⊂ [t j, t j+p+1] (9.47)

Proof. TODO �

9.5.2 Examples
Variation diminishing approximation

Proposition 9.5.5 For every function f ∈W 2
∞([a,b]) we have

‖ f −V f‖L∞([a,b]) ≤ 2(2p+1)2h2‖ f ′′‖L∞([a,b]) (9.48)

Exercise 9.3 Prove the last proposition.
(Hint: use the global estimation theorem with the L∞-norm.) �

3-points quadratic quasi-interpolation

Proposition 9.5.6 For every function f ∈W 3
∞([a,b]) we have

‖ f −Q2 f‖L∞([a,b]) ≤ 250h3‖ f (3)‖L∞([a,b]) (9.49)

Proof. TODO �

9.6 Approximation power of Splines
The following result gives the approximation power on the Schoenberg space. After stating this
important result, we shall give the proof through different steps.

Proposition 9.6.1 — Approximation Error. Let f ∈W l+1
q ([a,b]) with 1≤ q≤ ∞ and 0≤ l ≤ p.

Then there exists a spline sp ∈Sp(T) such that

‖D(r)(f − sp)‖Lq([a,b]) ≤ Khl+1−r‖ f (l+1)‖Lq([a,b]), 0≤ r ≤ l (9.50)

where h := max
p≤ j≤n

and K is a constant depending only on p.

R The constant K grows exponentially with p, but can be removed in some cases.

9.7 Problems
TODO

10. Historical Notes

TODO

III

11 Functional Analysis 96
11.1 Notations and Preliminaries
11.2 Sobolev spaces
11.3 The Sobolev space H(curl,Ω)
11.4 The Sobolev space H(div,Ω)
11.5 DeRham sequences
11.6 Problems

12 Galerkin methods 101
12.1 Abstract framework
12.2 Galerkin Approximation
12.3 Saddle-point problems
12.4 Problems

13 Historical Notes . 115

Finite Elements method

11. Functional Analysis

11.1 Notations and Preliminaries
In the course of the lecture we shall work with the Sobolev spaces Hm(Ω), H(div,Ω) and H(div,Ω)
and recall here there basic properties without proof. For a more detailed presentation with proofs
we refer to Section 2.1. of [1].

• we use blodface notation for spaces of vector functions. For instance in 3D, HHH1(Ω) denotes
the space

(
H1(Ω)

)3.
• for an operator d ∈ {∇∇∇,∇×,∇· }, we denote the kernel space N (d) while the range will be

R(d).

11.2 Sobolev spaces 97

We shall need the following Sobolev spaces, given first without boundary conditions,

H1(Ω) =
{

ϕ ∈ L2(Ω), ∇ϕ ∈ LLL2(Ω)
}

(11.1)

HHH1(Ω) =
{

ΨΨΨ ∈ L2(Ω), ∇ΨΨΨ ∈ LLL2(Ω)
}

(11.2)

HHH(curl,Ω) =
{

ΨΨΨ ∈ L2(Ω), ∇×ΨΨΨ ∈ LLL2(Ω)
}

(11.3)

HHH(div,Ω) =
{

ΨΨΨ ∈ L2(Ω), ∇ ·ΨΨΨ ∈ L2(Ω)
}

(11.4)

and using the correspondant boundary conditions,

H1
0 (Ω) =

{
ϕ ∈ H1(Ω), ϕ = 0 on ∂Ω

}
(11.5)

HHH1
0(Ω) =

{
ΨΨΨ ∈ HHH1(Ω), ΨΨΨ = 0 on ∂Ω

}
(11.6)

HHH0(curl,Ω) = {ΨΨΨ ∈ HHH(curl,Ω), ΨΨΨ×nnn = 0 on ∂Ω} (11.7)

HHH0(div,Ω) = {ΨΨΨ ∈ HHH(div,Ω), ΨΨΨ ·nnn = 0 on ∂Ω} (11.8)

L2
0(Ω) =

{
ϕ ∈ L2(Ω);

∫
Ω

ϕ = 0
}

(11.9)

Scalar-valued test functions will be denoted by ϕ , while ϕi will denote a scalar basis function, after
reordering all the basis functions of a given discrete space.
Vector-valued functions will be written in bold, like uuu,vvv. ΨΨΨ will denote a vector-valued test function,
whileΨΨΨi will denote a vector-valued basis function (after reordering the basis functions).
Even if most of what follows holds for both the 2D and 3D cases, we will restrict our studies to
the 2D one. We recall that in 2D, there are two curl operators, one acting on scalars ∇∇∇× φ =
(∂yφ ,−∂xφ) and one acting on vectors ∇×ΨΨΨ = ∂xΨΨΨ

y−∂yΨΨΨ
x. Differential operators that return

a vector (grad, curl) will be written in bold (∇∇∇,∇×). We also recall the Green formula for the
divergence and curl/rotational operators∫

Ω

(∇ ·FFF)G =−
∫

Ω

FFF ·∇∇∇G+
∫

∂Ω

(FFF ·nnn)G, ∀FFF ∈ HHH(div,Ω),∀G ∈ H1(Ω) (11.10)

∫
Ω

(∇∇∇×G) ·FFF =
∫

Ω

G∇×FFF−
∫

∂Ω

(G×nnn) ·FFF , ∀FFF ∈ HHH(curl,Ω),∀G ∈ H1(Ω) (11.11)

If Ω⊂ Rd , uuu = (u1,u2, . . . ,ud) and ΨΨΨ = (Ψ1,Ψ2, . . . ,Ψd) , we recall the notation∫
Ω

∇∇∇uuu : ∇∇∇ΨΨΨ =
d

∑
i=1

∫
Ω

∇∇∇ui ·∇∇∇Ψi (11.12)

11.2 Sobolev spaces
We shall denote by D(Ω) the space of distribution.

11.2.1 The Sobolev space W s,m

We start by recalling the definition of Sobolev spaces:

Definition 11.2.1 Let s and m be two integers with s≥ 0 and 1≤ m≤ ∞. The Sobolev space
W s,m(Ω) is defined as

W s,m(Ω) = {u ∈D ′(Ω), Dαu ∈ Lm(Ω), |α| ≤ s} (11.13)

The space W s,m(Ω) can be equipped with norm

‖u‖W s,m(Ω) := ∑
|α|≤s
‖Dαu‖Lp(Ω) (11.14)

98 Chapter 11. Functional Analysis

11.2.2 The Sobolev space Hm

For any integer m≥ 1, one can define

Hm(Ω) =W m,2(Ω) := {v ∈ L2(Ω) | Dαv ∈ L2(Ω), |α| ≤ m} (11.15)

Hm(Ω) is a Hilbert space equipped with the scalar product

(u,v)m,Ω := ∑
|α|≤m

∫
Ω

DαuDαv (11.16)

the associated norm will be denoted ‖ · ‖s,Ω.
The most classical second order operator is the Laplace operator, which reads in an arbitrary

dimension d (generally d = 1,2 or 3),

∆u =
d

∑
i=1

∂ 2u
∂x2

d
.

The classical Green formula for the Laplace operator reads: for u ∈ H1(Ω) and v ∈ H1(Ω)

−
∫

Ω

∆uvdx =
∫

Ω

∇u ·∇vdx−
∫

∂Ω

∂u
∂n

vdσ . (11.17)

For essential boundary conditions related with this Green formula we shall define the space

H1
0 (Ω) = {v ∈ H1(Ω) | v|∂Ω = 0}.

Another classical operator which comes from elasticity is the bilaplacian operator ∆2 = ∆∆,
which is a fourth order operator. The Green formula needed for variational formulations of PDEs
based on the bilaplacian reads∫

Ω

∆
2uvdx =

∫
Ω

u∆
2vdx+

∫
∂Ω

(
u

∂∆v
∂n
− v

∂∆u
∂n

+∆u
∂v
∂n
−∆v

∂u
∂n

)
dσ (11.18)

H2
0 (Ω) = {v ∈ H1(Ω) | v|∂Ω = 0,

∂v
∂n

∣∣
∂Ω

= 0}.

11.2.3 Inequalities
Lemma 9 — Poincaré. Let 1≤ p≤ ∞ and Ω be a bounded open set. Then, there exists a constant
C =C(p,Ω), such that

∀v ∈W 1,p
0 (Ω), C‖v‖Lp(Ω) ≤ ‖∇v‖Lp(Ω) (11.19)

11.3 The Sobolev space H(curl,Ω)

11.4 The Sobolev space H(div,Ω)

11.5 DeRham sequences
For any function u ∈H1(Ω) we have ∇×∇∇∇u = 0. On the other hand, we have for any function uuu ∈
HHH(curl,Ω), ∇ ·∇×uuu = 0. We just have shown that ∇∇∇(H1(Ω))⊂N (∇×) and ∇× (HHH(curl,Ω))⊂
N (∇·). This is summarized in the following diagram, known as DeRham sequence, without
boundary conditions in this case,

R ↪→ H1(Ω)
∇∇∇−−−−→ HHH(curl,Ω)

∇×−−−−−→ HHH(div,Ω)
∇·−−−−−→ L2(Ω)−−→ 0 (11.20)

11.5 DeRham sequences 99

and using the correspondant boundary conditions,

H1
0 (Ω)

∇∇∇−−−−→ HHH0(curl,Ω)
∇×−−−−−→ HHH0(div,Ω)

∇·−−−−−→ L2
0(Ω)−−→ 0 (11.21)

In fact, DeRham complexes are sequences of spaces Vi and operators d i such that d i+1 ◦ d i = 0.
It leads to a sepcific algebraic structure that has been subject to active research in Analysis and
Algebraic Geometry. or in a differential forms setting

R ↪→ Λ
0 d−−−−→ Λ

1 d−−−−→ Λ
2 d−−−−→ Λ

3 −−→ 0 (11.22)

where d stands for the exterior derivative, while Λk is the space of k-forms.

∇∇∇ ∇× ∇·
H1(Ω) −→ HHH(curl,Ω) −→ HHH(div,Ω) −→ L2(Ω)

Pgrad
h

y Pcurl
h

y Pdiv
h

y PL2

h

y
∇∇∇ ∇× ∇·

Vh(grad,Ω) −→ VVV h(curl,Ω) −→ VVV h(div,Ω) −→ Vh(L2,Ω)

11.5.1 Exact discrete DeRham sequence
11.5.2 Space decompositions

More details can be found in [9, 15].

N (∇×) = ∇H1
0 (Ω)⊕

(
∇H1

0 (Ω)
)⊥

(11.23)

where
(
∇H1

0 (Ω)
)⊥ is the orthogonal of H1

0 (Ω) in HHH0(curl,Ω) with respect to its inner product. We
denote this space KN(Ω), which is refered as the normal cohomology space.

KN(Ω) :=
(
∇H1

0 (Ω)
)⊥

(11.24)

KN(Ω) is the space of harmonic functions which vanish on the exterior and are constant in the
interior connected components of ∂Ω. Note that KN(Ω)⊂ HHH1

0(Ω).

Theorem 11.5.1 If uuu ∈ HHH0(curl,Ω), such that ∇× uuu = 0, then there exists a unique scalar
potential p ∈ H1

0 (Ω) and a function fff N ∈ KN(Ω) such that

uuu = ∇p+ fff N (11.25)

Theorem 11.5.2 — Helmoltz Decomposition. For every uuu ∈ LLL2(Ω) there exist a unique
• p ∈ H1

0 (Ω)
• fff N ∈ KN(Ω)
• A ∈ {www ∈ HHH(curl,Ω), ∇ ·www = 0, nnn ·www = 0 ∂Ω, < www ·nnn,1 >Γl= 0}

ensuring the following decomposition

uuu = ∇p+∇×A+ fff N (11.26)

100 Chapter 11. Functional Analysis

R If Ω is homotopy equivalent to a ball, then

N (∇×) = ∇H1
0 (Ω) (11.27)

Therefor, the Helmoltz decomposition writes

uuu = ∇p+∇×A (11.28)

Theorem 11.5.3 — Regular Decomposition of HHH(curl,Ω). For any uuu∈HHH(curl,Ω) there exists
a vvv ∈ HHH1(Ω) such that

1. ∇× vvv = ∇×uuu
2. ‖vvv‖LLL2(Ω) . ‖uuu‖LLL2(Ω)

3. ‖vvv‖HHH1(Ω) . ‖∇×uuu‖LLL2(Ω)

The following result can be found in [Pasciak2002a] and [Zhao2002a].

Theorem 11.5.4 — Regular Decomposition of HHH0(curl,Ω). For any uuu ∈ HHH0(curl,Ω) there
exists a vvv ∈ HHH1

0(Ω) such that
1. ∇× vvv = ∇×uuu
2. ‖vvv‖LLL2(Ω) . ‖uuu‖LLL2(Ω)

3. ‖vvv‖HHH1
0(Ω) . ‖∇×uuu‖LLL2(Ω)

11.6 Problems
TODO

12. Galerkin methods

12.1 Abstract framework
We consider a and L to be continuous bilinear and linear forms, respectively, on a Hilbert space V .
We want to find a computable approximation for the solution u ∈V of the variational problem

a(u,v) = 〈L,v〉, ∀v ∈V (12.1)

where 〈 ·, ·〉 denotes the duality product between V ′ and V .
The idea of Galerkin approximation, is to find the solution in a family of subspaces of finite
dimension, then prove that the constructed solutions converge to the solution of the variational
problem Eq. (12.1). There are two major strategies, the first one is based on the coercivity and
the other one on the inf-sup conditions. While the coercivity is easy to use, unfortunately, most of
problems in CFD do not fullfill it.

Definition 12.1.1 — V-ellipcity or Coercivity. a is said to be coercive, if there exists a constant
α > 0 such that

a(v,v)≥ α‖v‖2
V , ∀v ∈V (12.2)

Definition 12.1.2 — inf-sup conditions. a is said to statisfy the inf-sup conditions, if there
exists a constant α > 0 such that

1.

sup
v∈V

a(u,v)
‖v‖V

≥ α‖u‖V , ∀u ∈V (12.3)

2.

sup
u∈V

a(u,v)
‖u‖V

≥ α‖v‖V , ∀v ∈V (12.4)

102 Chapter 12. Galerkin methods

R Notice that when a satisfies the inf-sup conditions and it is symmetric, then both conditions
are the same. In general, the two conditions can be written as

inf
u∈V

sup
v∈V

a(u,v)
‖u‖V‖v‖V

> 0

and

inf
v∈V

sup
u∈V

a(u,v)
‖u‖V‖v‖V

> 0

Finally, let us notice that the coercivity implies the inf-sup conditions.

Lemma 10 If a is coercive then it satisfies the inf-sup conditions.

Proof. We have

sup
v∈V

a(u,v)
‖v‖V

≥ a(u,u)
‖u‖V

then we conclude using the coercivity of a. �

12.2 Galerkin Approximation
We consider a family of finite dimensional subspaces of V , denoted by (Vh)h>0. The Galerkin
approximation uh ∈Vh is defined as the solution of the varional problem Eq. (12.1) by restricting
the test functions on Vh, i.e.

a(uh,v) = 〈L,v〉, ∀v ∈Vh (12.5)

It is important to notice that while coercivity is inherited on subspaces, the inf-sup conditions are
not. It is therefor important to have an additional inf-sup condition on the subspace, known as
stability condition.

12.2.1 Convergence under coercivity
We recall Cea’s lemma, which states that the Galerkin approximation is bounded by the best
approximation of u from the subspace.

Lemma 11 — Cea. If a is a continuous and coercive bilinear form, then

‖u−uh‖V ≤
M
α

inf
v∈Vh
‖u− v‖V (12.6)

Proof. Since both u and uh are solutions to the variational problem (12.1) respectively on V and Vh,
we have

a(u−uh,v) = 0, ∀v ∈Vh

therefor, for v ∈Vh, we have

a(u−uh,u− v) = a(u−uh,u−uh)+a(u−uh,uh− v) = a(u−uh,u−uh)

Using the coercivity, we have

α‖u−uh‖V ≤ a(u−uh,u−uh) = a(u−uh,u− v)

finaly, the continuity of a gives

a(u−uh,u− v)≤M‖u−uh‖V‖u− v‖V
by combining the two previous inequalities we get the desired result. �

12.2 Galerkin Approximation 103

Theorem 12.2.1 If a is a continuous and coercive bilinear form and the subspaces Vh are such
that

lim
h→0

d(u,Vh) = 0 (12.7)

with d(u,Vh) := inf
v∈Vh
‖u− v‖V . Then

lim
h→0

uh = u

Proof. Follows immedialty from Cea’s lemma. �

12.2.2 Convergence under inf-sup conditions
As mentioned before, the inf-sup conditions are not inherited on the subspaces Vh. In general, we
must prove that there exists β > 0, such that the inf-sup holds on Vh, i.e.

sup
v∈Vh

a(u,v)
‖v‖V

≥ β‖u‖V , ∀u ∈Vh (12.8)

Idealy, β should be independent of N, in order to get the convergence.

Exercise 12.1 Prove that the second part of the inf-sup conditions is a consequence of the
inequality (12.8). �

As in the coercive case, we first state a result that compares the Galerkin approximation with the
distance to the space of approximation. This result is a generalization of Cea’s lemma, and is due
to Babuska.

Lemma 12 — Babuska. If a is a continuous bilinear form and satisfies the inf-sup+stability
conditions, then

‖u−uh‖V ≤
(

1+
M
β

)
inf

v∈Vh
‖u− v‖V (12.9)

Proof. Let v ∈Vh. since v−uh ∈Vh, the stability condition gives

sup
φ∈Vh

a(v−uh,φ)

‖φ‖V
≥ β‖v−uh‖V

but a(u−uh,v) = 0, meaning a(v−uh,φ) = a(v−u,φ) for all φ ∈Vh. Now using the continuity
of a we get

M‖v−u‖V ≥ sup
φ∈Vh

a(v−u,φ)
‖φ‖V

≥ β‖v−uh‖V

we conclude the proof by using the triangle inequality

‖u−uh‖V ≤ ‖u− v‖V +‖v−uh‖V ≤ ‖u− v‖V +
M
β
‖v−u‖V

�

104 Chapter 12. Galerkin methods

Theorem 12.2.2 If a is a continuous bilinear form and satisfies the inf-sup+stability conditions.
If the subspaces Vh are such that condition (12.7) holds, then

lim
h→0

uh = u

Proof. Follows immedialty from Babuska’s lemma. �

R Under the additional stability condition, we have ‖uh‖V ≤ 1
β
‖L‖V ′ , which is valid uniformuly

in N if β is independent of N.

12.2.3 The three basic aspects of the Finite Elements method
Let Ω⊂ Rd , with d ≥ 1, be a bounded domain.
In order to apply the Galerkin method, we face, by definition the problem of constructing the
family of finite dimensional subspaces Vh ⊂V , such that V is H1(Ω), H1

0 (Ω), H2(Ω), H(curl,Ω),
. . . As stating by P. Ciarlet, the Finite Elements Method is in its simplest form, a specific process of
constructing the family (Vh)h≥0. This construction is characterized by three basic aspects and are
described below.

First basic aspect: Triangulation
A triangulation Th is estabilshed over Ω̄, i.e. Ω̄ is subdivided into a finite number of subsets K,
called finite elements, such that

1. Ω̄ =
⋃

K∈Th

K

2. for all K ∈Th, K is closed and its interior is not empty
3. for all K1 6= K2 ∈Th we have K̊1

⋂
K̊2 = /0

4. for all K ∈Th, ∂K is Lipschitz-continuous

Second basic aspect: power approximation
On every K ∈ Th, a space of functions PK is constructed. PK should contain polynomials or
functions which are close to polynomials.

• this is the key to all convergence results
• it is also important for having simple and fast computations of the coefficients of the resulting

linear system

Third basic aspect: basis functions
There exists at least one canonical basis in the space Vh whose corresponding basis functions have
a local support property, are as small as possible and can be easily described. This aspect leads to
sparsity in the resulting matrix.

12.2 Galerkin Approximation 105

12.2.4 Examples
Scalar linear elliptic equations of second order
For Ω⊂ Rd , we consider the following problem{

− ∑
1≤i, j≤d

∂xi

(
ai j∂x j u

)
= f , Ω

u = 0, ∂Ω

(12.10)

where the coefficients functions ai j : Ω→R are bounded and there exists γ > 0 (ellipticity condition)
such that

γ|y|2 ≤ ∑
1≤i, j≤d

ai j(x)yiy j, ∀x ∈Ω, ∀y ∈ Rd (12.11)

Before writing the variational formulation associated to (12.10), we need to define the space of
function V which is in this case given by V := H1

0 (Ω) where

H1
0 (Ω) = {u ∈ H1(Ω), u = 0 on ∂Ω} (12.12)

and

H1(Ω) = {u ∈ L2(Ω), ∇u ∈ (L2(Ω))d} (12.13)

H1
0 (Ω) is a Hilbert space under the norm ‖ · ‖H1

0 (Ω) with

‖u‖2
H1

0 (Ω) := ‖u‖2
L2(Ω)+‖∇u‖2

L2(Ω) (12.14)

the bilinear and linear forms are given by

a(u,v) := ∑
1≤i, j≤d

∫
Ω

ai j∂x j u∂xiv dx

and

〈L,v〉=
∫

Ω

f v dx

Using the ellipticity condition, the boundness of the coefficients and the Poincaré inequality, we
show that a is coercive and continuous. Moreover, if f ∈ L2(Ω) then L is countinuous.

Biharmonic problem
We consider the following problem

42u = f , Ω

u = 0, ∂Ω

∇u ·nnn = 0, ∂Ω

(12.15)

which is known as the homogeneous Dirichlet problem for the biharmonic operator4. The space
of functions considered in this example V is given by V := H2

0 (Ω) where

H2
0 (Ω) = {u ∈ H2(Ω), u = ∇u ·nnn = 0 on ∂Ω} (12.16)

and

H2(Ω) = {u ∈ L2(Ω), ∇u ∈ (L2(Ω))d} (12.17)

H2
0 (Ω) is a Hilbert space under the norm v 7→ |4v|L2(Ω) with the bilinear and linear forms are given

by

a(u,v) :=
∫

Ω

4u4v dx

and

〈L,v〉=
∫

Ω

f v dx

106 Chapter 12. Galerkin methods

HHH(curl,Ω)-elliptic problem
Let Ω ⊂ Rd be an open Liptschitz bounded set, and we look for the solution of the following
problem{

∇×∇×uuu+µuuu = fff , Ω

uuu×nnn = 0, ∂Ω
(12.18)

where fff ∈ L2(Ω), µ ∈ L∞(Ω) and there exists µ0 > 0 such that µ ≥ µ0 almost everywhere. We
take the Hilbert space V := HHH0(curl,Ω), in which case the variational formulation corresponding
to (12.18) writes

Find uuu ∈V such that

a(uuu,vvv) = l(vvv) ∀vvv ∈V (12.19)

where{
a(uuu,vvv) :=

∫
Ω

∇×uuu ·∇× vvv+
∫

Ω
µuuu · vvv, ∀uuu,vvv ∈V

l(vvv) :=
∫

Ω
vvv · fff , ∀vvv ∈V

(12.20)

We recall that in HHH0(curl,Ω), the bilinear form a is equivalent to the inner product and is
therefor continuous and coercive. Hence, our abstract theory applies and there exists a unique
solution to the problem (12.19).

HHH(div,Ω)-elliptic problem
Let Ω ⊂ Rd be an open Liptschitz bounded set, and we look for the solution of the following
problem{

−∇∇∇∇ ·uuu+µuuu = fff , Ω

uuu×nnn = 0, ∂Ω
(12.21)

where fff ∈ L2(Ω), µ ∈ L∞(Ω) and there exists µ0 > 0 such that µ ≥ µ0 almost everywhere. We
take the Hilbert space V := HHH0(div,Ω), in which case the variational formulation corresponding to
(12.21) writes

Find uuu ∈V such that

a(uuu,vvv) = l(vvv) ∀vvv ∈V (12.22)

where{
a(uuu,vvv) :=

∫
Ω

∇ ·uuu ∇ · vvv+
∫

Ω
µuuu · vvv, ∀uuu,vvv ∈V

l(vvv) :=
∫

Ω
vvv · fff , ∀vvv ∈V

(12.23)

We recall that in HHH0(div,Ω), the bilinear form a is equivalent to the inner product and is therefor
continuous and coercive. Hence, our abstract theory applies and there exists a unique solution to
the problem (12.22).

12.3 Saddle-point problems 107

12.3 Saddle-point problems
In the sequel, we consider a special case of the problem (12.1).
Consider two Hilbert spaces V and W , two continuous bilinear forms a ∈ L (V ×V,R) and
b ∈L (V ×W,R) and two continuous linear forms lV ∈L (V,R) and lW ∈L (W,R). We denote
Ma and Mb the continuity constants for the bilinear forms a and b respectively. Then we define the
abstract mixed variational problem as Find (u, p) ∈V ×W such that{

a(u,v) + b(v, p) = lV (v) ∀v ∈V
b(u,q) = lW (q) ∀q ∈W

(12.24)

Many problems arising in CFD fit into this abstract framework, such as the Stokes equation.
For saddle point problems the Lax-Milgram framework cannot be applied. The alternative solution
is then to use the inf-sup conditions, known in this case as Banach-Nečas-Babuška (BNB) theorem.
The link with the previous section is achieved by using the bilinear form c ∈L (X×X ,R)

c((u, p),(v,q)) := a(u,v)+b(v, p)+b(u,q) (12.25)

and the linear form lX ∈L (X ,R)

lX(v,q) := lV (v)+ lW (q) (12.26)

with X :=V ×W endowed with the norm ‖(u, p)‖X := ‖u‖V +‖p‖W .
Let us introduce the operators A : V →V ′ and B : V →W ′ such that

〈Au,v〉V ′,V := a(u,v) ∀(u,v) ∈V ×V (12.27)

and

〈Bu, p〉W ′,V := b(u, p) ∀(u, p) ∈V ×W (12.28)

Since all Hilbert spaces are reflexive Banach spaces, we have W ′′ =W . Hence we can define the
following operator BT : W →V ′ such that

〈BT p,u〉V ′,W := b(u, p) ∀(u, p) ∈V ×W (12.29)

Therefor, the problem (12.24) is equivalent to Find (u, p) ∈V ×W such that{
Au + BT p = lV

Bu = lW
(12.30)

Now, let us introduce the nullspace of B

Ker B := {v ∈V, ∀q ∈W b(v,q) = 0} (12.31)

The following theorem gives shows under which conditions the saddle problem (12.24) has a
solution.

Theorem 12.3.1 The variational problem (12.24) admits a unique solution if and only if
1) there exists α > 0, such that inf

u∈Ker B
sup

v∈Ker B

a(u,v)
‖u‖V ‖v‖V ≥ α

∀v ∈ Ker B, (∀u ∈ Ker B, a(u,v) = 0)⇒ (v = 0)
(12.32)

2) The Babuska-Brezzi, or inf-sup condition, is verified: there exists β > 0 such that

inf
q∈W

sup
v∈V

b(u,q)
‖v‖V‖q‖W

≥ β (12.33)

108 Chapter 12. Galerkin methods

In addition, the following a priori estimates hold{
‖u‖V ≤ 1

α
‖lV‖V ′+ 1

β
(1+ Ma

α
)‖lW‖W ′

‖p‖W ≤ 1
β
(1+ Ma

α
)‖lV‖V ′+ Ma

β 2 (1+ Ma
α
)‖lW‖W ′

(12.34)

A special case is when the bilinear form a is coercive. In this case, the first conditions can be
replaced by a coercivity on Ker B.

Theorem 12.3.2 Let V and W be Hilbert space. Assume a is a continuous bilinear form on
V ×V and that b is a continuous linear form on V ×W , that lV and LW are continuous linear
forms on V and W respectively and that the following two hypotheses are verified

1) a is coercive on K = {v ∈V | b(q,v) = 0, ∀q ∈W}, i.e. there exists α > 0 such that

a(v,v)≥ α‖v‖2
V ∀v ∈ K.

2) The Babuska-Brezzi, or inf-sup condition, is verified: there exists β > 0 such that

inf
q∈W

sup
v∈V

b(v,q)
‖q‖W‖v‖V

≥ β .

Then the variational problem admits a unique solution and the solution satisfies the a priori
estimate{

‖u‖V ≤ 1
α
‖lV‖V ′+ 1

β
(1+ Ma

α
)‖lW‖W ′

‖p‖W ≤ 1
β
(1+ Ma

α
)‖lV‖V ′+ Ma

β 2 (1+ Ma
α
)‖lW‖W ′

(12.35)

The inf-sup conditions plays an essential role, as it is only satisfied if the spaces V and W are
compatible in some sense. This condition being satisfied at the discrete level with a constant β that
does not depend on the mesh size being essential for a well behaved Finite Element method. It can
be written equivalently

β‖q‖W ≤ sup
v∈V

b(v,q)
‖v‖V

∀q ∈W. (12.36)

And often, a simple way to verify it is, given any q ∈W , to find a specific v = v(q) depending on q
such that

β‖q‖W ≤
b(v(q),q)
‖v(q)‖V

≤ sup
v∈V

b(v,q)
‖v‖V

with a constant β independent of w.

12.3.1 Examples
First mixed formulation of the Poisson problem
Let Ω⊂ R3 and consider the Poisson problem{

−∆p = f , Ω

p = 0 , ∂Ω
(12.37)

Using that ∆p = ∇ ·∇p, we set u = ∇p, then the Poisson equation (12.37) can be written equiva-
lently

u =−∇p, ∇ ·u = f .

Instead of having one unknown, we now have two, along with the above two equations. In order to
get a mixed variational formulation, we first take the dot product of the first one by v and integrate

12.3 Saddle-point problems 109

by parts ∫
Ω

u ·vdx−
∫

Ω

p∇ ·vdx+
∫

∂Ω

pv ·ndσ =
∫

Ω

u ·vdx−
∫

Ω

p∇ ·vdx = 0,

using p = 0 as a natural boundary condition. Then multiplying the second equation by q and
integrating yields ∫

Ω

∇ ·uqdx =
∫

Ω

f qdx.

No integration by parts is necessary here. And we thus get the following mixed variational
formulation:

Find (u, p) ∈ H(div,Ω)×L2(Ω) such that{ ∫
Ω

u ·vdx −
∫

Ω
p∇ ·vdx = 0, ∀v ∈ H(div,Ω)

−
∫

Ω
∇ ·uqdx =−

∫
Ω

f qdx, ∀q ∈ L2(Ω)
(12.38)

Second mixed formulation of the Poisson problem
Here, we get an alternative formulation by not integrating by parts, the mixed term in the first
formulation but in the second. The first formulation simply becomes∫

Ω

u ·vdx+
∫

Ω

∇p ·vdx = 0,

and the second, removing immediately the boundary term due to the essential boundary condition
q = 0 ∫

Ω

∇ ·uqdx =−
∫

Ω

u ·∇qdx =
∫

Ω

f qdx,

which leads to the variational formulation

Find (u, p) ∈ L2(Ω)3×H1
0 (Ω) such that{ ∫

Ω
u ·vdx +

∫
Ω

∇p ·vdx = 0, ∀v ∈ L2(Ω)3∫
Ω

u ·∇qdx =−
∫

Ω
f qdx, ∀q ∈ H1

0 (Ω)
(12.39)

Note that this formulation actually contains the classical variational formulation for the Poisson
equation. Indeed for q ∈ H1

0 (Ω), ∇q ∈ L2(Ω)3 can be used as a test function in the first equation.
And plugging this into the second we get∫

Ω

∇p ·∇qdx =
∫

Ω

f qdx, ∀q ∈ H1
0 (Ω).

First mixed formulation of the Stokes problem
We consider now the Stokes problem for the steady-state modelling of an incompressible fluid

−∇2uuu+∇p = fff in Ω,
∇ ·uuu = 0 in Ω,

uuu = 0 on ∂Ω,
(12.40)

For the variational formulation, we take the dot product of the first equation with v and integrate
over the whole domain∫

Ω

(−∆u+∇p) ·vdx =
∫

Ω

∇u : ∇vdx+
∫

Ω

∇p ·vdx =
∫

Ω

f ·vdx

110 Chapter 12. Galerkin methods

The integration by parts is performed component by component. We impose the essential boundary
condition v = 0 on ∂Ω, and we denote by

∫
Ω

∇u : ∇vdx =
3

∑
i=1

∫
Ω

∇ui ·∇vi dx =
3

∑
i, j=1

∫
Ω

∂ jui∂ jvi dx.

We now need to deal with the constraint ∇ ·u = 0. The theoretical framework for saddle point
problems requires that the corresponding bilinear form is the same as the second one appearing
in the first part of the variational formulation. To this aim we multiply ∇ ·u = 0 by a scalar test
function (which will be associated to p) and integrate on the full domain, with an integration by
parts in order to get the same bilinear form as in the first equation∫

Ω

∇ ·uqdx =−
∫

Ω

u ·∇qdx = 0,

using that q = 0 on the boundary as an essential boundary condition. We finally obtain the mixed
variational formulation:

Find (u, p) ∈ H1
0 (Ω)3×H1

0 (Ω) such that{ ∫
Ω

∇u : ∇vdx +
∫

Ω
∇p ·vdx =

∫
Ω

f ·vdx, ∀v ∈ H1
0 (Ω)3∫

Ω
u ·∇qdx = 0, ∀p ∈ H1

0 (Ω)
(12.41)

Second mixed formulation of the Stokes problem
Another possibility to obtained a well posed variational formulation, is to integrate by parts the∫

Ω
∇p ·vdx term in the first formulation:∫

Ω

∇p ·vdx =−
∫

Ω

p∇ ·vdx+
∫

∂Ω

pv ·ndσ =−
∫

Ω

p∇ ·vdx,

using here p = 0 as a natural boundary condition. Note that in the other variational formulation the
same boundary condition was essential. In this case, for the second variational formulation, we just
multiply ∇ ·u = 0 by q and integrate. No integration by parts is needed in this case.∫

Ω

∇ ·uqdx = 0.

This then leads to the following variational formulation:

Find (u, p) ∈ H1(Ω)3×L2(Ω) such that{ ∫
Ω

∇u : ∇vdx −
∫

Ω
p∇ ·vdx =

∫
Ω

f ·vdx, ∀v ∈ H1(Ω)3∫
Ω

∇ ·uqdx = 0, ∀q ∈ L2(Ω)
(12.42)

12.3.2 Galerkin approximation
Let us now come to the Galerkin discretisation. The principle is simply to construct finite dimen-
sional subspaces Wh ⊂W and Vh ⊂V and to write the variational formulation (12.24) replacing W
by Wh and V by Vh. The variational formulations are the same as in the continuous case, like for
conforming finite elements. This automatically yields the consistency of the discrete formulation.
In order to get the stability property needed for convergence, we need that the coercivity constant α

and the inf-sup constant β are independent of h.

12.3 Saddle-point problems 111

Because Vh ⊂ V the coercivity property is automatically verified in the discrete case, with a
coercivity constant that is the same as in the continuous case and hence does not depend on the
discretisation parameter h.

Here, however, there is an additional difficulty, linked to the inf-sup conditions, which is
completely dependent on the two spaces Vh and Wh. By far not any conforming approximation of
the two spaces will verify the discrete inf-sup condition with a constant β that is independent on h.
Finding compatible discrete spaces for a given mixed variational formulation, has been an active
area of research.

The variational problem for the Galerkin approximation is Find (uh, ph) ∈Vh×Wh such that{
a(uh,vh) + b(vh, ph) = lV (vh) ∀vh ∈Vh

b(uh,qh) = lW (qh) ∀qh ∈Wh
(12.43)

Let us introduce the operator Bh : Vh→W ′h such that

〈Bhuh, ph〉W ′h,Vh
:= b(uh, ph) ∀(uh, ph) ∈Vh×Wh (12.44)

and its nullspace

Ker Bh := {vh ∈Vh, ∀qh ∈Wh b(vh,qh) = 0} (12.45)

The following proposition states the conditions under which the Galerkin approximation of the
problem (12.43) admits a solution

Proposition 12.3.3 The variational problem (12.43) admits a unique solution if and only if
1) there exists αh > 0, such that

inf
uh∈Ker Bh

sup
vh∈Ker Bh

a(uh,vh)

‖uh‖V‖vh‖V
≥ αh (12.46)

2) there exists βh > 0 such that

inf
qh∈Wh

sup
vh∈Vh

b(uh,qh)

‖vh‖V‖qh‖W
≥ βh (12.47)

R The second condition is equivalent to assuming Bh is surjective.

Finally, we state the following lemma which is equivalent to Cea’s lemma.

Lemma 13 Under the assumptions of theorem 12.3.3, we have
a) if Ker Bh ⊂ Ker B,

‖u−uh‖V ≤
(

1+ Ma
αh

)(
1+ Mb

βh

)
inf

vh∈Vh
‖u− vh‖V

‖p− ph‖W ≤ Ma
βh

(
1+ Ma

αh

)(
1+ Mb

βh

)
inf

vh∈Vh
‖u− vh‖V

+
(

1+ Mb
βh

)
inf

qh∈Wh
‖p−qh‖W

(12.48)

b) otherwise,

‖u−uh‖V ≤
(

1+ Ma
αh

)(
1+ Mb

βh

)
inf

vh∈Vh
‖u− vh‖V

+Mb
αh

inf
qh∈Wh

‖p−qh‖W

‖p− ph‖W ≤ Ma
βh

(
1+ Ma

αh

)(
1+ Mb

βh

)
inf

vh∈Vh
‖u− vh‖V

+
(

1+ Mb
βh

+ Ma
αh

Mb
βh

)
inf

qh∈Wh
‖p−qh‖W

(12.49)

112 Chapter 12. Galerkin methods

12.3.3 Examples
Matrix form of the first mixed formulation of the Poisson problem
Let Vh and Wh be subspaces of finite dimensions of HHH(div,Ω) and L2(Ω) respectively, leading to a
stable discretization of the variational problem (12.38). We shall assume that

Vh = span{ΨΨΨi, 1≤ i≤ NVh}

and
Wh = span{φi, 1≤ i≤ NWh}

where NVh and NWh is the dimension of Vh and Wh respectively. For uuuh ∈Vh and ph ∈Wh, we can
write

uuuh =

NVh

∑
j=1

u jΨΨΨ j, ph =

NWh

∑
j=1

p jφ j

By taking vvv = ΨΨΨi in the first equation of the variational formulation, we get

NVh

∑
j=1

u j

∫
Ω

ΨΨΨ j ·ΨΨΨi dx−
NWh

∑
j=1

p j

∫
Ω

φ j ∇ ·ΨΨΨi dx = 0, ∀ 1≤ i≤ NVh

By taking q = φi in the second equation of the variational formulation, we get

Ndiv

∑
j=1

u j

∫
Ω

∇ ·ΨΨΨ j φi dx =
∫

Ω

f φi dx, ∀ 1≤ i≤ NWh

Find (U,P) ∈ RNVh ×RNWh such that(
A B

BT 0

)(
U
P

)
=

(
0
F

)
(12.50)

where the matrices A and B are given by

Ai, j :=
∫

Ω

ΨΨΨ j ·ΨΨΨi dx, 1≤ i, j ≤ NVh

Bi, j :=−
∫

Ω

φ j ∇ ·ΨΨΨi dx, 1≤ j ≤ NVh , 1≤ i≤ NWh

Fi :=−
∫

Ω

f φi dx, 1≤ i≤ NWh

Matrix form for the second mixed formulation of the Poisson problem
Let Vh and Wh be subspaces of finite dimensions of L2(Ω)3 and H1

0 (Ω) respectively, leading to a
stable discretization of the variational problem (12.39). We shall assume that

Vh = span{ΨΨΨi, 1≤ i≤ NVh}

and
Wh = span{φi, 1≤ i≤ NWh}

where NVh and NWh is the dimension of Vh and Wh respectively. Following the same approach as
before, we get the matrix form of our variational formulation

12.3 Saddle-point problems 113

Find (U,P) ∈ RNVh ×RNWh such that(
A B

BT 0

)(
U
P

)
=

(
0
F

)
(12.51)

where the matrices A and B are given by

Ai, j :=
∫

Ω

ΨΨΨ j ·ΨΨΨi dx, 1≤ i, j ≤ NVh

Bi, j :=
∫

Ω

∇φ j ·ΨΨΨi dx, 1≤ j ≤ NVh , 1≤ i≤ NWh

Fi :=−
∫

Ω

f φi dx, 1≤ i≤ NWh

First mixed formulation of the Stokes problem
Let Vh and Wh be subspaces of finite dimensions of H1

0 (Ω)3 and H1
0 (Ω) respectively, leading to a

stable discretization of the variational problem (12.41). We shall assume that

Vh = span{ΨΨΨi, 1≤ i≤ NVh}

and
Wh = span{φi, 1≤ i≤ NWh}

where NVh and NWh is the dimension of Vh and Wh respectively. Following the same approach as
before, we get the matrix form of our variational formulation

Find (U,P) ∈ RNVh ×RNWh such that(
A B

BT 0

)(
U
P

)
=

(
F
0

)
(12.52)

where the matrices A and B are given by

Ai, j :=
∫

Ω

ΨΨΨ j : ΨΨΨi dx, 1≤ i, j ≤ NVh

Bi, j :=
∫

Ω

∇φ j ·ΨΨΨi dx, 1≤ j ≤ NVh , 1≤ i≤ NWh

Fi :=
∫

Ω

fff ·ΨΨΨi dx, 1≤ i≤ NWh

Second mixed formulation of the Stokes problem
Let Vh and Wh be subspaces of finite dimensions of H1(Ω)3 and L2(Ω) respectively, leading to a
stable discretization of the variational problem (12.42). We shall assume that

Vh = span{ΨΨΨi, 1≤ i≤ NVh}

and
Wh = span{φi, 1≤ i≤ NWh}

114 Chapter 12. Galerkin methods

where NVh and NWh is the dimension of Vh and Wh respectively. Following the same approach as
before, we get the matrix form of our variational formulation

Find (U,P) ∈ RNVh ×RNWh such that(
A B

BT 0

)(
U
P

)
=

(
F
0

)
(12.53)

where the matrices A and B are given by

Ai, j :=
∫

Ω

ΨΨΨ j : ΨΨΨi dx, 1≤ i, j ≤ NVh

Bi, j :=−
∫

Ω

φ j∇ ·ΨΨΨi dx, 1≤ j ≤ NVh , 1≤ i≤ NWh

Fi :=
∫

Ω

fff ·ΨΨΨi dx, 1≤ i≤ NWh

12.4 Problems
TODO

13. Historical Notes

TODO

IV

14 Isogeometric Finite Elements 118
14.1 Sobolev estimations under h-refinement
14.2 Galerkin approximation
14.3 Exact DeRham sequences
14.4 Problems

15 Historical Notes . 139

Isogeometric Analysis

14. Isogeometric Finite Elements

14.1 Sobolev estimations under h-refinement
14.1.1 Approximation properties without mapping

We consider a computational domain Ω̂ := (0,1)d , with d ≥ 1. Given d knot vectors for each
direction T (α) := {t(α)

0 , · · · , t(α)
nα+pα+1}. For α ∈ {1, · · · ,d}, we denote I(α)

i := (t(α)
i , t(α)

i+1) and by

construction we have t(α)
pα

= 0 and t(α)
nα

= 1. We shall denote I := (0,1), i.e. Ω̂ = Id . The d knot
vectors will define a natural triangulation of Ω̂, which we denote Qh(Ω̂) (the subscript h will
be made clear later). An element of Q ∈Qh(Ω̂) is of the form

⊗
1≤α≤d

I(α)
iα , for some multi-index

i := (i1, · · · , id). We will denote the element size of Q ∈Qh(Ω̂) by hQ := diam(Q), moreover, we
shall define hQ,α for 1≤ α ≤ d as the length of I(α)

iα , while h := max
Q∈Qh(Ω̂)

hQ will represent the global

mesh size.
We shall also assume our mesh to be locally quasi-uniform, meaning, there exists a constant

θ ≥ 1 such that

1
θ
≤

h
I(α)
iα ,α

h
I(α)
iα+1,α

≤ θ , ∀ 1≤ α ≤ d (14.1)

For every element Q we define its extension as the union of supports of non-vanishing B-Splines
on Q, which we will denote by Q̃, (see figure ??). Finally, the α-coordinate will be denoted by ηα

for all 1≤ α ≤ d.
We recall that the Schoenberg space of degree p and associated to the knot sequence T is

denoted by Sp(T). Another equivalent notation would be S p
µµµ (T ?) (or simply S p

µµµ for the sake of
simplicity), where as usual T ? denotes the set of breakpoints associated to T and µµµ is a sequence of

14.1 Sobolev estimations under h-refinement 119

Figure 14.1: An element Q and its extension Q̃ for an open knot sequence, with quadratic B-Splines.

120 Chapter 14. Isogeometric Finite Elements

multiplicities of each breakpoint. More generaly, in higher dimensions, the Schoenberg space is
defined by tensor product

Vh :=
⊗

1≤α≤d

S pα

µµµα
(14.2)

Finally, we shall denote by Πh a quasi-interpolant on Vh.
Let us introduce the following space of functions, which will be needed to define the bent

Sobolev space:

D s
T (I) := { f ∈ L2(I); Dk

− f (ti) = Dk
+ f (ti), ∀ 0≤ k ≤min(s−1,µi), ∀ 1≤ i≤ n−1}

(14.3)

We define the bent Sobolev space on I as

H s(I) = { f ∈ L2(I), f |Q ∈ Hs(Q), ∀Q ∈Qh(I) and f ∈D s
T} (14.4)

The bent Sobolev spaces are endowed with the broken norm and seminorms

‖ f‖2
H s(I) := ∑

0≤ j≤s
| f |2H j(I) (14.5)

where

| f |2H j(I) := ∑
Ii∈Qh(I)

| f |2H j(Ii)
(14.6)

In higher dimensions, the bent Sobolev spaces are defined by tensor product, for a multi-index
s = (s1, · · · ,sd), as follows

H s(Ω̂) =
⊗

1≤α≤d

H sα (I) (14.7)

which are endowed by the tensor-product norm and seminorms.
For any sufficiently regular function f : Ω̂→ R, we shall define the partial derivative operator of
order r (a multi-index)

Dr f :=
∂ r1 . . .∂ rd

∂η
r1
1 . . .∂η

rd
d

f (14.8)

Finally, for any union A⊂ Ω̂ of elements of the triangulation Qh(Ω̂), we will define

‖ f‖2
L2

h(A)
:= ∑

Q∈Qh(Ω̂) and Q⊂A

‖ f‖2
L2(Q) (14.9)

The following proposition gives a local anisotropic estimation of the best approximation.

Proposition 14.1.1 — Anisotropic estimation in 2d. If 0≤ r≤ s≤ p+1, there exists a constant
C(p,θ) such that for all elements Q ∈Qh(Ω̂), we have

‖Dr(f −Π f)‖L2(Q) ≤C
(

hs1−r1
Q,1 ‖D

(s1,r2) f‖L2
h(Q̃)+hs2−r2

Q,2 ‖D
(r1,s2) f‖L2

h(Q̃)

)
(14.10)

for all f ∈H (s1,r2)(Ω̂)∩H (r1,s2)(Ω̂).

14.1 Sobolev estimations under h-refinement 121

Figure 14.2: The triangulation Qh(Ω̂) in the logical domain and its image Qh(Ω), under the
mapping F. An element Q ∈Qh(Ω̂) is mapped onto K ∈Qh(Ω).

14.1.2 Approximation properties with mapping
We now turn to the general case, where the domain Ω := F(Ω̂) with F : Rd → Rd is a one to one
map. We shall use the results from the previous section on Ω̂, and then assume that Ω̂ := (0,1)d .
The α-coordinate will be denoted, in this case, by xα for all 1≤ α ≤ d. Ω will be subdivided into
elements K := F(Q) where Q ∈Qh(Ω̂), hence Qh(Ω) := F(Qh(Ω̂)). Moreover, every extension
K̃ of K is also of the form F(Q̃) with K = F(Q).

In order to define the bent Sobolev space, we will first introduce the following broken norms
and seminorms

‖ f‖2
H s

F (A)
:= ∑

0≤j≤s
| f |2

H j
F (A)

(14.11)

where

| f |2H s
F (A)

:= ∑
K∈Qh(Ω) s.t. K⊂A

‖Ds
F f‖2

L2(K) (14.12)

Finally, we shall consider the bent Sobolev space H s
F as the closure of C∞(Ω) with respect to the

norm ‖ · ‖H s
F

. We can now state the approximation theorem on the bent Sobolev space, which is
suitable for anistropic estimates.

Theorem 14.1.2 If 0≤ r≤ s≤ p+1, there exists a constant C(p,θ ,F) such that for all elements
K ∈Qh(Ω), we have

‖ f −Πh f‖H r
F (K) ≤C

(
hs1−r1

K,1 ‖ f‖
H

(s1,r2)
F (K̃)

+hs2−r2
K,2 ‖ f‖

H
(r1 ,s2)

F (K̃)

)
(14.13)

for all f ∈H (s1,r2)(Ω)∩H (r1,s2)(Ω).

122 Chapter 14. Isogeometric Finite Elements

Corollary 14.1.3 If 0≤ r ≤ s≤min(p)+1, there exists a constant C(p,θ ,F) such that for all
elements K ∈Qh(Ω), we have

‖ f −Πh f‖Hr(K) ≤Chs−r
K ‖ f‖Hs(K̃) (14.14)

and

‖ f −Πh f‖Hr(Ω) ≤Chs−r‖ f‖Hs(Ω) (14.15)

for all f ∈ Hs(Ω).

14.2 Galerkin approximation
As in the previous section, we shall distinguish between the two cases with and without mapping.

14.2.1 Case without mapping
We consider a first coarse mesh, which is given in this case by one element in each direction
Ω̂ = (0,1)d . Then we define a sequence of d knot vectors

(
{T (α)

N , 1≤ α ≤ d}
)

N≥0
such that

lim
N→∞

hN = 0 where hN is the diameter associated to the triangulation endowed by the knot vectors

{T (α)
N , 1≤ α ≤ d}.

R Creating such a sequence of knot vectors can be done through the insertion of knots, as
presented in the CAD part of this lecture.

For every N, we have a Schoenberg space associated to the knot vectors {T (α)
N , 1≤ α ≤ d}, which

is denoted by Vh.

Matrix form for Poisson:
We consider the Poisson problem with Homogeneous Dirichlet boundary conditions, for which the
variational problem writes: Find u ∈ H1

0 (Ω̂) such that∫
Ω̂

∇u ·∇v dηηη =
∫

Ω̂

f v dηηη , ∀v ∈ H1
0 (Ω̂) (14.16)

One can create a subspace of H1
0 (Ω̂) from the tensor product of Schoenberg spaces (14.2), by

removing the first and last B-Splines, which are interpolatories (equal to 1) at the endpoints in every
direction, which we will denote by V 0

h . From now on, we shall use multi-indices and introduce the
tensor B-Splines functions

N ppp
iii (ηηη) := ∏

1≤α≤d
N pα

iα (ηα) (14.17)

where ηηη = (η1, · · · ,ηd), ppp = (p1, · · · , pd) and iii = (i1, · · · , id). Using these notations, we have

Vh = span{N ppp
iii ; 0≤ iii≤ nnn} (14.18)

while

V 0
h = span{N ppp

iii ; 1≤ iii≤ nnn−1} (14.19)

where nnn = (n1, · · · ,nd).

14.2 Galerkin approximation 123

The discrete variational formulation is: Find u ∈V 0
h such that∫

Ω̂

∇u ·∇v dηηη =
∫

Ω̂

f v dηηη , ∀v ∈V 0
h (14.20)

Let uh ∈V 0
h such that uh = ∑

jjj
u jjjN

ppp
µµµ, jjj. Then the weak formulation for the Poisson equation writes

∑
jjj

u jjj

∫
Ω̂

∇N ppp
µµµ, jjj ·∇N ppp

µµµ,iii dηηη =
∫

Ω̂

f N ppp
µµµ,iii dηηη , ∀1≤ iii≤ nnn−1

In practice, in order to store these terms, we will need to have a reordering of the indices so that
we map the set of multi-indices {1≤ iii≤ nnn−1} onto a set of 1d indices {1≤ I ≤ N}. Using this
reordering, we get the following linear system

MU = F

where U denotes the coefficients (uJ, 1 ≤ J ≤ N) and F is a vector consisting of the terms∫
Ω̂

f N ppp
µµµ,iii dηηη for 1≤ iii≤ nnn−1. Finally, the matrix M is called the stiffness matrix and its entries

are defined as
MIJ =

∫
Ω̂

∇N ppp
µµµ, jjj ·∇N ppp

µµµ,iii dηηη

Exercise 14.1 We assume in this exercise d = 2. Show that solving the associated linear system
to the Poisson problem is equivalent to
Find X ∈ Rn1−1×Rn2−1, such that

S1XM2 +M1XS2 = F (14.21)

where the vector of unknowns (and right hand side) are viewed as matrices in X ∈Rn1−1×Rn2−1.
�

Matrix form for the Biharmonic problem:
We consider the Biharmonic problem (12.15), for which the variational formulation is given by
Find u ∈V such that

a(u,v) = l(v) ∀v ∈V (14.22)

with V := H2
0 (Ω) and

a(u,v) :=
∫

Ω

4u4v dx, 〈L,v〉=
∫

Ω

f v dx

Because of the Sobolev embedding, functions in V can be seen as C1(Ω). Therefor, we have to
create the Schoenberg spaces in such a way the global regularity is at least C1. This leads to a
condition on the multiplicity of the interior knots and is ensured if we take ppp≥ µµµ +1, with ppp≥ 2.
The discrete space V 0

h must fulfill another condition, which is related to the constraint ∇u ·nnn = 0
on ∂Ω. Now, since the first derivative of a B-Spline curve is only defined by the two first control
points, having u = 0 and ∇u ·nnn = 0 on the boundary is equivalent to set the first and last two control
points to be exactly 0. Hence, our discrete space is defined as

V 0
h = span{N ppp

iii ; 2≤ iii≤ nnn−2} (14.23)

124 Chapter 14. Isogeometric Finite Elements

Figure 14.3: Coarse mesh in the logical and physical domain induced by a quadratic representation
using two Bézier patchs for each quarter of the annulus. In the radial direction, linear splines are
used.

The discrete variational formulation is: Find u ∈V 0
h such that∫

Ω̂

4u ·4v dηηη =
∫

Ω̂

f v dηηη , ∀v ∈V 0
h (14.24)

Let uh ∈ V 0
h such that uh = ∑

jjj
u jjjN

ppp
µµµ, jjj. Then the weak formulation for the Biharmonic equation

writes

∑
jjj

u jjj

∫
Ω̂

4N ppp
µµµ, jjj ·4N ppp

µµµ,iii dηηη =
∫

Ω̂

f N ppp
µµµ,iii dηηη , ∀1≤ iii≤ nnn−1

In practice, in order to store these terms, we will need to have a reordering of the indices so that
we map the set of multi-indices {2≤ iii≤ nnn−2} onto a set of 1d indices {1≤ I ≤ N}. Using this
reordering, we get the following linear system

MU = F

where U denotes the coefficients (uJ, 1 ≤ J ≤ N) and F is a vector consisting of the terms∫
Ω̂

f N ppp
µµµ,iii dηηη for 2≤ iii≤ nnn−2. Finally, the matrix M entries are defined as

MIJ =
∫

Ω̂

4N ppp
µµµ, jjj ·4N ppp

µµµ,iii dηηη

14.2.2 Case with mapping
In this case, the coarse mesh is given by the mapping F if it is discrete (constructed using B-Splines
or NURBS). Let us denote VF the Schoenberg space associated to the mapping F. We shall denote
{T (α)

F , 1≤α ≤ d} the knot vectors associated VF, the corresponding multiplicities to the beakpoints
will be denoted µµµα

F , for every 1≤ α ≤ d.

14.2 Galerkin approximation 125

Figure 14.4: Coarse mesh in the logical and physical domain induced by a cubic representation
using one Bézier patch. In the radial direction, linear splines are used.

The family of discrete subspaces needed for the Galerkin approximation, must be created such that
the breakpoints of T (α)

F are contained in T (α)
N , for every 1≤ α ≤ d. There are two reasons for this

constraint:
1. A theoretical one, due to the definition of the bent Sobolev spaces,
2. A computational one, due to the quadrature rule that will be used on each element Q∈Qh(Ω̂)

of the logical domain.
In figure 14.3, we show a parametrization of half of the annulus using quadratic B-Splines (NURBS)
in the angular direction, with the knot vector {0,0,0, 1

2 ,
1
2 ,1,1,1}. In the radial direction, we use

linear B-Splines with the knot vector {0,0,1,1}. This leads to a coarse mesh of two elements in
the first parametric direction and one in the second direction.

In figure 14.4, we show a parametrization of half of the annulus using cubic B-Splines (NURBS)
in the angular direction, with the knot vector {0,0,0,0,1,1,1,1}. In the radial direction, we use
linear B-Splines with the knot vector {0,0,1,1}. This leads to a coarse mesh of one element in
each parametric direction.

Given a coarse parametrization of the domain, we can use the h-refinement strategy which is
achieved by inserting new knots in each direction.

Matrix form for Poisson
The discrete subspaces are defined as

V 0
h = span{N ppp

iii ◦F−1; 1≤ iii≤ nnn−1} (14.25)

where nnn = (n1, · · · ,nd).
The discrete variational formulation is: Find u ∈V 0

h such that∫
Ω

∇u ·∇v dxxx =
∫

Ω

f v dxxx, ∀v ∈V 0
h (14.26)

126 Chapter 14. Isogeometric Finite Elements

Figure 14.5: The mapping used in Fig. 14.4 after inserting 3 new knots in each direction, leading to
4 elements in each direction.

Figure 14.6: The mapping used in Fig. 14.4 after inserting 7 new knots in each direction, leading to
8 elements in each direction.

14.3 Exact DeRham sequences 127

The next step is to map back the gradients from the physical domain to the logical one. Since for
any function u we have,

∇u(xxx) = (DF)−T
∇̂u(F−1(xxx)) (14.27)

we can plug this expression in (14.26) which will lead to a kind of general elliptic problem on
the logical domain. It is important to notice that for performance issues, we will not invert the
jacobian matrix everytime, but rather computing the inverse analyticaly (or symbolicaly) in 2d and
3d.

Exercise 14.2 Find the matrix form for the Biharmonic problem in the case where a mapping
is used. �

14.3 Exact DeRham sequences

In the sequel, we shall give exact DeRham sequences based on B-Splines in Rd for d = 1,2,3. We
assume that the domain Ω is simply connected. Let us first recall that in 1D, DeRham sequence is
reduced to

H1(Ω)
∇∇∇−−−−→ L2(Ω)

in 2d, we have two sequences

H1(Ω)
∇∇∇−−−−→ HHH(curl,Ω)

∇×−−−−−→ L2(Ω)

and

H1(Ω)
∇∇∇×−−−−−→ HHH(div,Ω)

∇·−−−−−→ L2(Ω)

while in 3d, we have the following sequence

H1(Ω)
∇∇∇−−−−→ HHH(curl,Ω)

∇×−−−−−→ HHH(div,Ω)
∇·−−−−−→ L2(Ω)

For simplicity, we shall introduce the operator d , that corresponds to the appropriate operator (∇∇∇,
∇×, . . .) for a given space, and rewrite our diagrams as

- 1D case:

H1(Ω)
d−−→ L2(Ω) (14.28)

- 2D case:

H1(Ω)
d−−→ HHH(curl,Ω)

d−−→ L2(Ω) (14.29)

H1(Ω)
d−−→ HHH(div,Ω)

d−−→ L2(Ω) (14.30)

- 3D case:

H1(Ω)
d−−→ HHH(curl,Ω)

d−−→ HHH(div,Ω)
d−−→ L2(Ω) (14.31)

128 Chapter 14. Isogeometric Finite Elements

Exact sequence in 1D

We start by taking a subspace Vh(grad,Ω) ⊂ H1(Ω). In 1D, Vh(grad,Ω) is a Schoenberg space
associated to a given knot sequence T . We know that both B-Splines and M-Splines can be
used as basis for the Schoenberg space. If we take the B-Splines as the canonical basis on
Vh(grad,Ω) := span{N p

i ,0≤ i≤ n }, we know that every function u ∈Vh(grad,Ω) can be written
as u = ∑

i
uiN

p
i . By taking its derivative, we get

u′ = ∑
i

ui
(
N p

i

)′
= ∑

i
(−ui−1 +ui)M

p−1
i

since (
N p

i

)′
= Mp−1

i −Mp−1
i+1

Now if we introduce the space Vh(L2,Ω) := span{Mp−1
i ,0≤ i≤ n }. We just have shown that

∀u ∈Vh(grad,Ω), u′ ∈Vh(L2,Ω) (14.32)

On the other hand, it is clear that the operator d is surjective (for any function u ∈Vh(L2,Ω), the
function

∫ x
x0

u(t) dt is clearly in Vh(grad,Ω)). This is summarized in the following diagram

Vh(grad,Ω)
d−−−−→ Vh(L2,Ω) (14.33)

where{
Vh(grad,Ω) = S p

µµµ := span{N p
i , 0≤ i≤ n }

Vh(L2,Ω) = M p−1
µµµ−1 := span{Mp−1

i , 0≤ i≤ n } (14.34)

R Let us introduce the B-Splines coefficients vector u := (ui)1≤i≤n (and u? for the derivative),
we have

u? = Du (14.35)

where D is the incidence matrix (of entries −1 and +1).

Exact sequences in 2D

Let us introduce the spaces

Vh(grad,Ω) = S p1
µµµ1
⊗S p2

µµµ2

VVV h(curl,Ω) =

(
M p1−1

µµµ1−1⊗S p2
µµµ2

S p1
µµµ1
⊗M p2−1

µµµ2−1

)

VVV h(div,Ω) =

(
S p1

µµµ1
⊗M p2−1

µµµ2−1

M p1−1
µµµ1−1⊗S p2

µµµ2

)
Vh(L2,Ω) = M p1−1

µµµ1−1⊗M p2−1
µµµ2−1

(14.36)

Lemma 14 We have the following properties
• ∇∇∇Vh(grad,Ω)⊂VVV h(curl,Ω)
• ∇×VVV h(curl,Ω)⊂Vh(L2,Ω)

14.3 Exact DeRham sequences 129

• ∇∇∇×Vh(grad,Ω)⊂VVV h(curl,Ω)
• ∇ ·VVV h(curl,Ω)⊂Vh(L2,Ω)

Proof. Can be deduced thanks to the property (14.32). �

Proposition 14.3.1 We have the following diagrams

Vh(grad,Ω)
d−−→ VVV h(curl,Ω)

d−−→ Vh(L2,Ω) (14.37)

Vh(grad,Ω)
d−−→ VVV h(div,Ω)

d−−→ Vh(L2,Ω) (14.38)

Proof. We shall restrict our proofto the sequence (14.37) and show that using the previous discrete
spaces, we maintain the same relationships as in the continuous case.
Since Ω is simply connected, we know that in the continuous case, the kernel of the curl operator is
equal to the range of the gradient operator, i.e.

∇∇∇(H1(Ω)) = N (∇×)

Showing the exactness of the discrete DeRham sequence means that the last property is preserved
in the discrete case. We shall then show that

∇∇∇(Vh(grad,Ω)) = N (∇×)∩VVV h(curl,Ω)

since fpr amm u ∈Vh(grad,Ω) we have ∇×∇∇∇u = 0, we get

∇∇∇(Vh(grad,Ω))⊂N (∇×)∩VVV h(curl,Ω)

In order to show the equality, it is enough to show that both spaces have the same dimension. But we
have dimVh(grad,Ω) = (n1 +1)(n2 +1). But since, Ω is simply connected we hae dimN (∇∇∇) = 1
and therefor we have

dim∇∇∇(Vh(grad,Ω)) = (n1 +1)(n2 +1)−1

On the other hand, we have

dimVVV h(curl,Ω) = dim(N (∇×)∩VVV h(curl,Ω))+dim(R(∇×)∩VVV h(curl,Ω))

= n1(n2 +1)+(n1 +1)n2

meaning

dim(N (∇×)∩VVV h(curl,Ω)) = 2n1n2 +n1 +n2−dim(R(∇×)∩VVV h(curl,Ω))

In order to show that

dim∇∇∇(Vh(grad,Ω)) = dim(N (∇×)∩VVV h(curl,Ω))

it is then enough to show that

dim(R(∇×)∩VVV h(curl,Ω)) = n1n2

but since the operator ∇× : VVV h(curl,Ω)→Vh(L2,Ω) is surjective (proof similar to the 1d case), we
deduce that ∇×(VVV h(curl,Ω)) =Vh(L2,Ω). Finally, we have dimVh(L2,Ω) = n1n2 which completes
the proof. �

130 Chapter 14. Isogeometric Finite Elements

R The discrete derivatives in 2D are given by

G =

(
D⊗ I
I⊗D

)
CCC =

(
I⊗D
−D⊗ I

)
C =

(
−I⊗D D⊗ I

)
D =

(
D⊗ I I⊗D

)
(14.39)

where we used the identity matrix I.

Exact sequence in 3D

Let us introduce the spaces

Vh(grad,Ω) = S p1
µµµ1
⊗S p2

µµµ2
⊗S p3

µµµ3

VVV h(curl,Ω) =

M p1−1
µµµ1−1⊗S p2

µµµ2
⊗S p3

µµµ3

S p1
µµµ1
⊗M p2−1

µµµ2−1⊗S p3
µµµ3

S p1
µµµ1
⊗S p2

µµµ2
⊗M p3−1

µµµ3−1


VVV h(div,Ω) =

S p1
µµµ1
⊗M p2−1

µµµ2−1⊗M p3−1
µµµ3−1

M p1−1
µµµ1−1⊗S p2

µµµ2
⊗M p3−1

µµµ3−1

M p1−1
µµµ1−1⊗M p2−1

µµµ2−1⊗S p3
µµµ3


Vh(L2,Ω) = M p1−1

µµµ1−1⊗M p2−1
µµµ2−1⊗M p3−1

µµµ3−1

(14.40)

Proposition 14.3.2 We have the following diagram

Vh(grad,Ω)
d−−→ VVV h(curl,Ω)

d−−→ VVV h(div,Ω)
d−−→ Vh(L2,Ω) (14.41)

R The discrete derivatives in 3D are given by

G =

D⊗ I⊗ I
I⊗D⊗ I
I⊗ I⊗D


C =

 0 −I⊗ I⊗D I⊗D⊗ I
I⊗ I⊗D 0 −D⊗ I⊗ I
−I⊗D⊗ I D⊗ I⊗ I 0


D =

(
D⊗ I⊗ I I⊗D⊗ I I⊗ I⊗D

)
(14.42)

where we used the identity matrix I.

14.3.1 Commuting diagrams
DeRham diagrams such as (14.28), (14.29), (14.30) and (14.31) can be extended with additional
operators. Among the important properties, one can build specific projectors that make these
diagrams commute. We shall start with the 1D case, then extend it by tensor product. For this
purpose, we take any interpolator, denoted by Ip

T , (Fix-DeBoor for theoretical studies, or B-Splines
interpolator), quasi-interpolator or least-square approximation associated to a given knot sequence
T and degree p, and then we define the corresponding histopolation operator by

H p
T f := DIp+1

T

(
x 7→

∫ x

x0

f dx
)

(14.43)

14.3 Exact DeRham sequences 131

1D case

We then introduce the operators{
Pgrad

h := Ip
T

PL2

h := H p−1
T

(14.44)

Proposition 14.3.3 For any u ∈C∞(Ω), we have

dPgrad
h (u) = PL2

h (du) (14.45)

Exercise 14.3 Prove the previous proposition. �

These results are summarized in the following commuting diagram

Hs(Ω)
d−−−−→ Hs−1(Ω)

Pgrad
h

y PL2

h

y
Vh(grad,Ω)

G−−−−→ Vh(L2,Ω)

(14.46)

2D case

We then introduce the operators

Pgrad
h := Ip1

T1
� Ip2

T2

Pcurl
h :=

(
H p1−1

T1
� Ip2

T2

Ip1
T1
�H p2−1

T2

)

Pdiv
h :=

(
Ip1
T1
�H p2−1

T2

H p1−1
T1
� Ip2

T2

)
PL2

h := H p1−1
T1
�H p2−1

T2

(14.47)

where the notation � to express the composition of operators on each coordinate, for example,

Ip1
T1
� Ip2

T2
f := Ip1

T1

(
x 7→ Ip2

T2
(y 7→ f (x,y))

)
Proposition 14.3.4 For any u ∈C∞(Ω) and uuu ∈ C∞(Ω), we have

1) for the first sequence (14.37)

dPgrad
h (u) = Pcurl

h (du) (14.48)

dPcurl
h (uuu) = PL2

h (duuu) (14.49)

2) for the second sequence (14.38)

dPgrad
h (u) = Pdiv

h (du) (14.50)

dPdiv
h (uuu) = PL2

h (duuu) (14.51)

132 Chapter 14. Isogeometric Finite Elements

Exercise 14.4 Prove the previous proposition. �

These results are summarized in the following commuting diagrams

H1(Ω)
∇∇∇−−−−→ HHH(curl,Ω)

∇×−−−−−→ L2(Ω)

Pgrad
h

y Pcurl
h

y PL2

h

y
Vh(grad,Ω)

G−−−−→ VVV h(curl,Ω)
C−−−−→ Vh(L2,Ω)

(14.52)

and

H1(Ω)
∇×−−−−−→ HHH(div,Ω)

∇·−−−−−→ L2(Ω)

Pgrad
h

y Pdiv
h

y PL2

h

y
Vh(grad,Ω)

CCC−−−−→ VVV h(div,Ω)
D−−−−→ Vh(L2,Ω)

(14.53)

3D case

We then introduce the operators

Pgrad
h := Ip1

T1
� Ip2

T2
� Ip3

T3

Pcurl
h :=

H p1−1
T1
� Ip2

T2
� Ip3

T3

Ip1
T1
�H p2−1

T2
� Ip3

T3

Ip1
T1
� Ip2

T2
�H p3−1

T3


Pdiv

h :=

Ip1
T1
� Ip2

T2
�H p3−1

T3

Ip1
T1
�H p2−1

T2
� Ip3

T3

H p1−1
T1
� Ip2

T2
� Ip3

T3


PL2

h := H p1−1
T1
�H p2−1

T2
�H p3−1

T3

(14.54)

Proposition 14.3.5 For any u ∈C∞(Ω) and uuu ∈ C∞(Ω), we have

dPgrad
h (u) = Pcurl

h (du) (14.55)

dPcurl
h (uuu) = Pdiv

h (duuu) (14.56)

dPdiv
h (uuu) = PL2

h (duuu) (14.57)

Exercise 14.5 Prove the previous proposition. �

These results are summarized in the following commuting diagram

H1(Ω)
∇∇∇−−−−→ HHH(curl,Ω)

∇×−−−−−→ HHH(div,Ω)
∇·−−−−−→ L2(Ω)

Pgrad
h

y Pcurl
h

y Pdiv
h

y PL2

h

y
Vh(grad,Ω)

G−−−−→ VVV h(curl,Ω)
C−−−−→ VVV h(div,Ω)

D−−−−→ Vh(L2,Ω)

(14.58)

14.3 Exact DeRham sequences 133

14.3.2 Examples without mapping

Matrix form for HHH(curl,Ω)-elliptic problem:

We consider the discrete variational formulation of (12.18), for which the associated matrix form
was given in (12.2.4). Here Vh :=VVV h(curl,Ω). As in opposition to the previous chapter, we now
have an explicit expression for the basis functions, we shall use them to get a final matrix form that
can be implemented. For the sake of simplicity we shall introduce the scalar functions

Ψ
1
jjj = Mp1−1

µµµ1−1,i1
N p2

µµµ2,i2
N p3

µµµ3,i3

Ψ
2
jjj = N p1

µµµ1,i1
Mp2−1

µµµ2−1,i2
N p3

µµµ3,i3

Ψ
3
jjj = N p1

µµµ1,i1
N p2

µµµ2,i2
Mp3−1

µµµ3−1,i3

we also define the vectors eee1 =

1
0
0

, eee2 =

0
1
0

 and eee3 =

0
0
1

. Therefor, the expression of

uuuh ∈VVV h(curl,Ω) becomes

uuuh = ∑
jjj

(
u1

jjjΨ
1
jjjeee1 +u2

jjjΨ
2
jjjeee2 +u3

jjjΨ
3
jjjeee3
)

On the other hand, we have,

∇×Ψ
1
jjjeee1 = ∂x3Ψ

1
jjjeee2−∂x2Ψ

1
jjjeee3

∇×Ψ
2
jjjeee2 =−∂x3Ψ

2
jjjeee1 +∂x1Ψ

2
jjjeee3

∇×Ψ
3
jjjeee3 = ∂x2Ψ

3
jjjeee1−∂x1Ψ

3
jjjeee2

Because eeei · eee j = δi j, we get,

∇×Ψ
1
jjjeee1 ·∇×Ψ

1
iii eee1 = ∂x3Ψ

1
jjj ∂x3Ψ

1
iii +∂x2Ψ

1
jjj ∂x2Ψ

1
iii

∇×Ψ
1
jjjeee1 ·∇×Ψ

2
iii eee2 =−∂x2Ψ

1
jjj ∂x1Ψ

2
iii

∇×Ψ
1
jjjeee1 ·∇×Ψ

3
iii eee3 =−∂x3Ψ

1
jjj ∂x1Ψ

3
iii

∇×Ψ
2
jjjeee2 ·∇×Ψ

2
iii eee2 = ∂x3Ψ

2
jjj ∂x3Ψ

2
iii +∂x1Ψ

2
jjj ∂x1Ψ

2
iii

∇×Ψ
2
jjjeee2 ·∇×Ψ

3
iii eee3 =−∂x3Ψ

2
jjj ∂x2Ψ

3
iii

∇×Ψ
3
jjjeee3 ·∇×Ψ

3
iii eee3 = ∂x2Ψ

3
jjj ∂x2Ψ

3
iii +∂x1Ψ

3
jjj ∂x1Ψ

3
iii

we find that A is a symmetric 3×3 block matrix of the form

A =

A11 A12 A13
AT

12 A22 A23
AT

13 AT
23 A33

 (14.59)

134 Chapter 14. Isogeometric Finite Elements

where

A11iii, jjj =
∫

Ω

∂x3Ψ
1
jjj∂x3Ψ

1
iii +∂x2Ψ

1
jjj∂x2Ψ

1
iii dx+

∫
Ω

µΨ
1
jjjΨ

1
iii dx

A12iii, jjj =−
∫

Ω

∂x2Ψ
1
jjj∂x1Ψ

2
iii dx

A13iii, jjj =−
∫

Ω

∂x3Ψ
1
jjj∂x1Ψ

3
iii dx

A22iii, jjj =
∫

Ω

∂x3Ψ
2
jjj ∂x3Ψ

2
iii +∂x1Ψ

2
jjj ∂x1Ψ

2
iii dx+

∫
Ω

µΨ
2
jjjΨ

2
iii dx

A23iii, jjj =−
∫

Ω

∂x3Ψ
2
jjj ∂x2Ψ

3
iii dx

A33iii, jjj =
∫

Ω

∂x2Ψ
3
jjj ∂x2Ψ

3
iii +∂x1Ψ

3
jjj ∂x1Ψ

3
iii dx+

∫
Ω

µΨ
3
jjjΨ

3
iii dx

For the right hand side, the entries associated to each component of the vector fff are given by

F1,i =
∫

Ω

fff 1Ψ
1
i dx

F2,i =
∫

Ω

fff 2Ψ
2
i dx

F3,i =
∫

Ω

fff 3Ψ
3
i dx

Matrix form for HHH(div,Ω)-elliptic problem:

Exercise 14.6 Compute the matrix form for the HHH(div,Ω)-elliptic problem. �

Matrix form for Poisson using mixed FEM:
We consider the discrete variational formulation of (12.38), for which the associated matrix form
was given in (12.3.3). Here Vh :=VVV h(div,Ω) and Wh :=Vh(L2,Ω). As in opposition to the previous
chapter, we now have an explicit expression for the basis functions, we shall use them to get a
final matrix form that can be implemented. For the sake of simplicity we shall introduce the scalar
functions

Ψ
1
jjj = N p1

µµµ1,i1
Mp2−1

µµµ2−1,i2
Mp3−1

µµµ3−1,i3

Ψ
2
jjj = Mp1−1

µµµ1−1,i1
N p2

µµµ2,i2
Mp3−1

µµµ3−1,i3

Ψ
3
jjj = Mp1−1

µµµ1−1,i1
Mp2−1

µµµ2−1,i2
N p3

µµµ3,i3

and

φ jjj = Mp1−1
µµµ1−1,i1

Mp2−1
µµµ2−1,i2

Mp3−1
µµµ3−1,i3

we also define the vectors eee1 =

1
0
0

, eee2 =

0
1
0

 and eee3 =

0
0
1

. Therefor, the expression of

uuuh ∈VVV h(div,Ω) becomes

uuuh = ∑
jjj

(
u1

jjjΨ
1
jjjeee1 +u2

jjjΨ
2
jjjeee2 +u3

jjjΨ
3
jjjeee3
)

Because eeei · eee j = δi j, we find that A is a block diagonal matrix of the form

A =

A11 0 0
0 A22 0
0 0 A33

 (14.60)

14.3 Exact DeRham sequences 135

where

A11iii, jjj =
∫

Ω

Ψ
1
iii Ψ

1
jjj dx

A22iii, jjj =
∫

Ω

Ψ
2
iii Ψ

2
jjj dx

A33iii, jjj =
∫

Ω

Ψ
3
iii Ψ

3
jjj dx

While for B we have

B =

B1
B2
B3

 (14.61)

where

B1iii, jjj =−
∫

Ω

φ jjj∂x1Ψ
1
iii dx

B2iii, jjj =−
∫

Ω

φ jjj∂x2Ψ
2
iii dx

B3iii, jjj =−
∫

Ω

φ jjj∂x3Ψ
3
iii dx

The final matrix form is
A11 0 0 B1
0 A22 0 B2
0 0 A33 B3

BT
1 BT

2 BT
3 0




U1
U2
U3
P

=


0
0
0
F


with

Fi =−
∫

Ω

f φi dx, 1≤ i≤ NWh

Exercise 14.7 By exploiting the tensor structure of the basis, rewrite the matrix form in terms
of Kronecker products. �

Exercise 14.8 Write the matrix form of the second formulation (12.3.3) of the Mixed Poisson
problem. �

Matrix form for the Stokes problem:
We consider the discrete variational formulation of (12.42), for which the associated matrix form
was given in (12.3.3). Here Vh :=Vh(grad,Ω) and Wh :=Vh(L2,Ω). As in opposition to the previous
chapter, we now have an explicit expression for the basis functions, we shall use them to get a
final matrix form that can be implemented. For the sake of simplicity we shall introduce the scalar
functions

Ψ
1
jjj = N p1

µµµ1,i1
N p2

µµµ2,i2
N p3

µµµ3,i3

Ψ
2
jjj = N p1

µµµ1,i1
N p2

µµµ2,i2
N p3

µµµ3,i3

Ψ
3
jjj = N p1

µµµ1,i1
N p2

µµµ2,i2
N p3

µµµ3,i3

136 Chapter 14. Isogeometric Finite Elements

and

φ jjj = Mp1−1
µµµ1−1,i1

Mp2−1
µµµ2−1,i2

Mp3−1
µµµ3−1,i3

we also define the vectors eee1 =

1
0
0

, eee2 =

0
1
0

 and eee3 =

0
0
1

. Therefor, the expression of

uuuh ∈VVV h(div,Ω) becomes

uuuh = ∑
jjj

(
u1

jjjΨ
1
jjjeee1 +u2

jjjΨ
2
jjjeee2 +u3

jjjΨ
3
jjjeee3
)

Because eeei · eee j = δi j, we find that A is a block diagonal matrix of the form

A =

A11 0 0
0 A22 0
0 0 A33

 (14.62)

where

A11iii, jjj =
∫

Ω

∇Ψ
1
iii ·∇Ψ

1
jjj dx

A22iii, jjj =
∫

Ω

∇Ψ
2
iii ·∇Ψ

2
jjj dx

A33iii, jjj =
∫

Ω

∇Ψ
3
iii ·∇Ψ

3
jjj dx

While for B we have

B =

B1
B2
B3

 (14.63)

where

B1iii, jjj =−
∫

Ω

φ jjj∂x1Ψ
1
iii dx

B2iii, jjj =−
∫

Ω

φ jjj∂x2Ψ
2
iii dx

B3iii, jjj =−
∫

Ω

φ jjj∂x3Ψ
3
iii dx

The final matrix form is
A11 0 0 B1
0 A22 0 B2
0 0 A33 B3

BT
1 BT

2 BT
3 0




U1
U2
U3
P

=


F1
F2
F3
0


with

F1,i =
∫

Ω

fff ·Ψ1
i dx

F2,i =
∫

Ω

fff ·Ψ2
i dx

F3,i =
∫

Ω

fff ·Ψ3
i dx

14.3 Exact DeRham sequences 137

Exercise 14.9 By exploiting the tensor structure of the basis, rewrite the matrix form in terms
of Kronecker products. �

Exercise 14.10 Write the matrix form of the second formulation (12.3.3) of the Mixed Poisson
problem. �

14.3.3 Pullbacks
In the case where the physical domain Ω := F (Ω̂) is the image of a logical domain Ω̂ by a smooth
mapping F (at least C 1), we have the following parallel diagrams (14.64)

H1(Ω)
∇∇∇−−−−→ HHH(curl,Ω)

∇×−−−−−→ HHH(div,Ω)
∇·−−−−−→ L2(Ω)

ı0
x ı1

x ı2
x ı3

x
H1(Ω̂)

∇∇∇−−−−→ H(curl,Ω̂)
∇×−−−−−→ H(div,Ω̂)

∇·−−−−−→ L2(Ω̂)

(14.64)

Where the mappings ı0, ı1, ı2 and ı3 are called pullbacks and are given by Eq. (14.65), (14.66),
(14.67) and (14.68). with DF is the jacobian matrix of the mapping F . We recall that the pullbacks

ı0φ̂ := xxx→ φ̂(F−1(xxx)) ∀ φ̂ ∈ H1(Ω̂) (14.65)

ı1Ψ̂ := xxx→ (DF)−T
Ψ̂(F−1(xxx)) ∀ Ψ̂ ∈ H(curl,Ω̂)

(14.66)

ı2Φ̂ := xxx→ 1
J
DFΦ̂(F−1(xxx)) ∀ Φ̂ ∈ H(div,Ω̂)

(14.67)

ı3ρ̂ := xxx→ ρ̂(F−1(xxx)) ∀ ρ̂ ∈ L2(Ω̂) (14.68)

ı0, ı1, ı2 and ı3 are isomorphisms between the corresponding spaces, with ı1 and ı2 are the Piola
transformations.

Exercise 14.11 Write these matrices in an explicit form, using symbolic calculus or analyticaly.
�

138 Chapter 14. Isogeometric Finite Elements

14.3.4 Examples with mapping
Matrix form for HHH(curl,Ω)-elliptic problem:
TODO

Matrix form for HHH(div,Ω)-elliptic problem:
TODO

Matrix form for Poisson using mixed FEM:
TODO

14.4 Problems
TODO

15. Historical Notes

TODO

V

16 Kronecker Algebra 142
16.1 Kronecker algebra
16.2 Problems

17 Historical Notes . 147

Linear Algebra

16. Kronecker Algebra

16.1 Kronecker algebra
In this section, we present an overview about an interesting subject, which is the Kronecker Algebra,
and which will be of a big interest in the Fast-IGA approach. Most of the presented results were
taken from [11, 20].

Definition 16.1.1 — The vec operator. Let A = (ai j) ∈Mn×m, the vec operator is defined as,

vecA =

 A:,1
...

A:,m

 ∈ Rmn (16.1)

which is simply a vector composed by stacking all the columns of A. Where we denote A:, j the
jth column of A.
We also define the inverse operator of vec by,

A = vec−1vecA (16.2)

Definition 16.1.2 — Kronecker product. Let A = (ai j)∈Mm×n and B = (bi j)∈Mr×s be two
matrices. The Kronecker product of A and B, denoted by A⊗B ∈Mmr×ns, defines the following
matrix:

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
am1B am2B · · · amnB

 (16.3)

16.1 Kronecker algebra 143

Example
Let

A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
then their Kronecker product is,

A⊗B =


a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

 (16.4)

Properties
Proposition 16.1.1 If α is a scalar, then

A⊗αB = αA⊗B (16.5)

Proposition 16.1.2 We have,

(A+B)⊗C = A⊗C+B⊗C (16.6)

A⊗ (B+C) = A⊗B+A⊗C (16.7)

Proposition 16.1.3 — Associativity.

A⊗B⊗C = A⊗ (B⊗C) = (A⊗B)⊗C (16.8)

Proposition 16.1.4 — Mixed Product Rule.

(A⊗B)(C⊗D) = AC⊗BD (16.9)

and,

(A⊗B)p = Ap⊗Bp, ∀p ∈ N (16.10)

Proposition 16.1.5

(A⊗B)T = AT ⊗BT (16.11)

Proposition 16.1.6

(A⊗B)−1 = A−1⊗B−1 (16.12)

Proposition 16.1.7

vec(ABC) = (CT ⊗A)vec(B) (16.13)

Proposition 16.1.8

tr(A⊗B) = tr(B⊗A) = tr(A)tr(B) (16.14)

Proposition 16.1.9 Let A ∈Mn×n and B ∈Mm×m, we have,

mspec(A⊗B) = {λ µ, λ ∈mspec(A), µ ∈mspec(B)} (16.15)

144 Chapter 16. Kronecker Algebra

Proposition 16.1.10 Let A ∈Mn×n and B ∈Mm×m, we have,

det(A⊗B) = (detA)m(detB)n (16.16)

We deduce from 16.15,

Proposition 16.1.11 Let A ∈Mn×n, we have,

ρ(A⊗A) = ρ(A)2 (16.17)

Proposition 16.1.12 Let f be an analytic function, A ∈Mn×n such that f (A) exists, then we have,

f (Im⊗A) = Im⊗ f (A) (16.18)

f (A⊗ Im) = f (A)⊗ Im (16.19)

Proposition 16.1.13 Let X ∈ Rn and Y ∈ Rm, be two vectors. We have,

XY T = X⊗ (Y T) = (Y T)⊗X (16.20)

moreover, we have,

vec(XY T) = Y ⊗X (16.21)

Definition 16.1.3 — Kronecker permutation matrix. The Kronecker permutation matrix
Pn,m ∈Mnm×nm, is defined by,

Pn,m =
n,m

∑
i, j=1

Ei, j,n×m⊗E j,i,m×n (16.22)

Proposition 16.1.14 Let A ∈Mm×n, we have,

vec(AT) = Pm,nvec(A) (16.23)

Proposition 16.1.15 Let us consider the Kronecker permutation matrix Pn,m ∈Mnm×nm. Then we
have,

• PT
n,m = P−1

n,m = Pm,n

• Pn,m is orthogonal,
• Pn,mPm,n = Inm

• Pn,n is orthogonal, symmetric and involutory,
• Pn,n is a reflector,
• trPn,n = n,
• P1,m = Im, and Pn,1 = In

• if X ∈ Rn and Y ∈ Rm, then,

Pn,m(Y ⊗X) = X⊗Y (16.24)

• if A ∈Mn×m and B ∈Mr×s, then

Pr,n(A⊗B)Pm,s = B⊗A (16.25)

• if A ∈Mn×n and B ∈Mm×m, then

Pm,n(A⊗B)Pn,m = Pm,n(A⊗B)P−1
m,n = B⊗A (16.26)

Therefor, A⊗B and B⊗A are similar.

16.1 Kronecker algebra 145

Proposition 16.1.16 Let A ∈Mn×n and B ∈Mm×m, then we have the following properties,
• if A and B are diagonal, then A⊗B is diagonal,
• if A and B are upper triangular, then A⊗B is upper triangular,
• if A and B are lower triangular, then A⊗B is lower triangular,

Proposition 16.1.17 Let A,C ∈Mn×m and B,D ∈Mr×s. If A is (left equivalent, right equivalent,
equivalent) to C, and assume that B is (left equivalent, right equivalent, equivalent) to D. Then,
A⊗B is (left equivalent, right equivalent, equivalent) to C⊗D.

R The use of Kronecker product preconditioners is well known [Langville_Stewart, Elisabeth_Ullmann,
GRIGORI:2008:INRIA-00268301:5, 14], it is based on results of the form,

Minimizing, φA(B,C) = ‖A−B⊗C‖2 (16.27)

for a chosen norm.

16.1.1 Kronecker sum
Definition 16.1.4 — Kronecker sum. Let A = (ai j) ∈Mn×n and B = (bi j) ∈Mm×m be two
matrices. The Kronecker sum of A and B, denoted by A⊕B ∈Mmn×mn, defines the following
matrix:

A⊕B = A⊗ Im + In⊗B (16.28)

Proposition 16.1.18 Let A ∈Mn×n and B ∈Mm×m, we have,

mspec(A⊕B) = {λ +µ, λ ∈mspec(A), µ ∈mspec(B)} (16.29)

16.1.2 Solving AX +XB =C
Let A ∈Mn×n, B ∈Mm×m and C ∈Mn×m. The aim of this section, is to solve the equation:

AX +XB =C (16.30)

we can rewrite this equation in term of the Kronecker sum:

(BT ⊕A)vecX = vecC (16.31)

or equivalently,

Gx = c (16.32)

where, G = (BT ⊕A), x = vecX , and c = vecC.
Using the property 16.29, we can easily check that 16.30 has a unique solution if and only if G is
nonsingular, i.e λ +µ 6= 0, ∀λ ∈mspec(A), ∀µ ∈mspec(B), which can be written in the form,

mspec(A)∩mspec(−B) = /0 (16.33)

Proposition 16.1.19 If mspec(A)∩mspec(−B) = /0, then there exists a unique matrix X ∈Mn×m,

satisfying 16.30. Moreover, the matrices
(

A C
0 −B

)
and

(
A 0
0 −B

)
are similar and verify,

(
A C
0 −B

)
=

(
I X
0 I

)(
A 0
0 −B

)(
I −X
0 I

)
. (16.34)

146 Chapter 16. Kronecker Algebra

16.1.3 Solving AXB =C
Let A,B,C and X ∈Mn×n. As seen previously, using 16.13, the equation

AXB =C (16.35)

can be written in the form,

Hx = c (16.36)

where, H = (BT ⊗A), x = vecX , and c = vecC.
Using the property 16.15, we can easily check that 16.35 has a unique solution if and only if H
is nonsingular, i.e λ µ 6= 0, ∀λ ∈mspec(A), ∀µ ∈mspec(B), which is equivalent to, A and B are
both nonsingular.

16.1.4 Solving ∑
r
i=1 AiXBi =C

Let Ai,Bi,C, 1 ≤ i ≤ r and X ∈Mn×n. Using, the previous result, it is easy to show that the
solution of:

r

∑
i=1

AiXBi =C (16.37)

can be written in the form,

Hx = c (16.38)

where, H = ∑
r
i=1(B

T
i ⊗Ai), x = vecX , and c = vecC.

16.2 Problems
TODO

17. Historical Notes

TODO

VI

18 Navier Stokes . 150
18.1 Problems

19 Historical Notes . 151

Bibliography . 152
Articles
Books

Applications

18. Navier Stokes

18.1 Problems
TODO

19. Historical Notes

TODO

Bibliography

Articles
[2] Sylvie Boldo and Marc Daumas. “A Simple Test Qualifying the Accuracy of Horner’S Rule

for Polynomials”. In: Numerical Algorithms 37 (2004), pages 45–60 (cited on page 13).

[7] R.T. Farouki and V.T. Rajan. “On the numerical condition of polynomials in Bernstein
form”. In: Computer Aided Geometric Design 4.3 (1987), pages 191–216. ISSN: 0167-8396.
DOI: https://doi.org/10.1016/0167-8396(87)90012-4. URL: https:
//www.sciencedirect.com/science/article/pii/0167839687900124
(cited on page 13).

[8] R.T. Farouki and V.T. Rajan. “Algorithms for polynomials in Bernstein form”. In: Com-
puter Aided Geometric Design 5.1 (1988), pages 1–26. ISSN: 0167-8396. DOI: https:
//doi.org/10.1016/0167- 8396(88)90016- 7. URL: https://www.
sciencedirect.com/science/article/pii/0167839688900167 (cited
on page 13).

[13] Qixing Huang, Shimin Hu, and Ralph Robert Martin. “Fast degree elevation and knot
insertion for B-spline curves”. In: Comput. Aided Geom. Des. 22 (2005), pages 183–197
(cited on pages 62, 63).

[14] Charles F. van Loan. “The ubiquitous Kronecker product”. In: J. Comput. Appl. Math. 123
(1-2 Nov. 2000), pages 85–100. ISSN: 0377-0427. DOI: 10.1016/S0377-0427(00)
00393-9. URL: http://portal.acm.org/citation.cfm?id=363882.
363888 (cited on page 145).

[18] Hartmut Prautzsch and Bruce Piper. “A fast algorithm to raise the degree of spline curves”.
In: Comput. Aided Geom. Des. 8 (4 Oct. 1991), pages 253–265. ISSN: 0167-8396. DOI: 10.
1016/0167-8396(91)90015-4. URL: http://portal.acm.org/citation.
cfm?id=124930.124932 (cited on page 63).

https://doi.org/https://doi.org/10.1016/0167-8396(87)90012-4
https://www.sciencedirect.com/science/article/pii/0167839687900124
https://www.sciencedirect.com/science/article/pii/0167839687900124
https://doi.org/https://doi.org/10.1016/0167-8396(88)90016-7
https://doi.org/https://doi.org/10.1016/0167-8396(88)90016-7
https://www.sciencedirect.com/science/article/pii/0167839688900167
https://www.sciencedirect.com/science/article/pii/0167839688900167
https://doi.org/10.1016/S0377-0427(00)00393-9
https://doi.org/10.1016/S0377-0427(00)00393-9
http://portal.acm.org/citation.cfm?id=363882.363888
http://portal.acm.org/citation.cfm?id=363882.363888
https://doi.org/10.1016/0167-8396(91)90015-4
https://doi.org/10.1016/0167-8396(91)90015-4
http://portal.acm.org/citation.cfm?id=124930.124932
http://portal.acm.org/citation.cfm?id=124930.124932

153

Books
[1] D. Boffi, F. Brezzi, and M. Fortin. Mixed Finite Element Methods and Applications. Springer

Series in Computational Mathematics. Springer Berlin Heidelberg, 2013. ISBN: 9783642365195.
URL: https://books.google.co.ma/books?id=mRhAAAAAQBAJ (cited on
page 96).

[3] C. de Boor. A Practical Guide to Splines. Applied Mathematical Sciences. Springer New
York, 2001. ISBN: 9780387953663. URL: https://books.google.de/books?id=
m0QDJvBI%5C_ecC (cited on page 66).

[4] Elaine Cohen, Richard F Riesenfeld, and Gershon Elber. Geometric modeling with splines:
an introduction. CRC Press, 2001 (cited on page 66).

[5] Gerald Farin. NURBS for Curve & Surface Design: From Projective Geometry to Practical
Use. CRC Press, 1999 (cited on page 66).

[6] Gerald E Farin and Gerald Farin. Curves and surfaces for CAGD: a practical guide. Morgan
Kaufmann, 2002 (cited on page 66).

[9] V. Girault and P.A. Raviart. Finite element methods for Navier-Stokes equations: theory
and algorithms. Springer series in computational mathematics. Springer-Verlag, 1986. ISBN:
9783540157960. URL: https://books.google.de/books?id=BVfvAAAAMAAJ
(cited on page 99).

[10] Ronald N. Goldman and Tom Lyche. Knot Insertion and Deletion Algorithms for B-Spline
Curves and Surfaces. Edited by Ronald N. Goldman and Tom Lyche. Philadelphia, PA: Soci-
ety for Industrial and Applied Mathematics, 1992. DOI: 10.1137/1.9781611971583.
eprint: https://epubs.siam.org/doi/pdf/10.1137/1.9781611971583.
URL: https://epubs.siam.org/doi/abs/10.1137/1.9781611971583
(cited on page 61).

[11] A. Graham. Kronecker products and matrix calculus with applications. 1981 (cited on
page 142).

[12] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Second. Society for
Industrial and Applied Mathematics, 2002. DOI: 10.1137/1.9780898718027. eprint:
https://epubs.siam.org/doi/pdf/10.1137/1.9780898718027. URL:
https://epubs.siam.org/doi/abs/10.1137/1.9780898718027 (cited on
page 13).

[15] Monk P. Finite Element Methods for Maxwell”s Equations. Calderon Press (Oxford), 2003.
ISBN: 978-0-19-850888-5 (cited on page 99).

[16] Les Piegl and Wayne Tiller. The NURBS book. Springer Science & Business Media, 1996
(cited on pages 63, 66).

[17] Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny. Bézier and B-spline techniques.
Springer Science & Business Media, 2002 (cited on page 66).

[19] David F Rogers. An introduction to NURBS: with historical perspective. Morgan Kaufmann,
2001 (cited on page 66).

[20] Bernstein D. S. Matrix Mathematics: Theory, Facts, and Formulas. second. PRINCETON
UNIVERSITY PRESS, 2009. ISBN: 978-0-691-13287-7 (cited on page 142).

https://books.google.co.ma/books?id=mRhAAAAAQBAJ
https://books.google.de/books?id=m0QDJvBI%5C_ecC
https://books.google.de/books?id=m0QDJvBI%5C_ecC
https://books.google.de/books?id=BVfvAAAAMAAJ
https://doi.org/10.1137/1.9781611971583
https://epubs.siam.org/doi/pdf/10.1137/1.9781611971583
https://epubs.siam.org/doi/abs/10.1137/1.9781611971583
https://doi.org/10.1137/1.9780898718027
https://epubs.siam.org/doi/pdf/10.1137/1.9780898718027
https://epubs.siam.org/doi/abs/10.1137/1.9780898718027

	Part I — Computer Aided Design
	1 Introduction
	1.1 Implicit form
	1.2 Parametric curves
	1.3 Power basis form of a curve
	1.4 Problems

	2 Bézier curves
	2.1 Bernstein polynomials
	2.2 Bézier curves
	2.3 DeCasteljau Algorithm
	2.4 Conversion from/to monomial form
	2.5 Rational Bézier curves
	2.6 Composite Bézier curves
	2.7 Problems

	3 B-Splines
	3.1 Knot vector families
	3.2 Examples
	3.3 B-Splines properties
	3.4 Derivatives of B-Splines
	3.5 Problems

	4 Cardinal B-Splines
	4.1 Cardinal B-Splines
	4.2 Cardinal B-Spline series
	4.3 Problems

	5 B-Splines curves
	5.1 B-Splines curves
	5.2 Derivtive of a B-spline curve
	5.3 Rational B-Splines (NURBS) curves
	5.4 Fundamental geometric operations
	5.5 Problems

	6 Historical Notes

	Part II — Approximation theory for B-Splines
	7 Divided differences
	7.1 Lagrange interpolation
	7.2 Hermite interpolation
	7.3 Divided differences
	7.4 Problems

	8 Schoenberg space of Spline functions
	8.1 Basic Splines
	8.2 Spline functions
	8.3 Dual functionals
	8.4 Problems

	9 Spline Approximation
	9.1 Introduction
	9.2 Examples
	9.3 Quasi-Interpolation
	9.4 Global approximation
	9.5 Approximation with Quasi-Interpolation
	9.6 Approximation power of Splines
	9.7 Problems

	10 Historical Notes

	Part III — Finite Elements method
	11 Functional Analysis
	11.1 Notations and Preliminaries
	11.2 Sobolev spaces
	11.3 The Sobolev space H(curl,)
	11.4 The Sobolev space H(div,)
	11.5 DeRham sequences
	11.6 Problems

	12 Galerkin methods
	12.1 Abstract framework
	12.2 Galerkin Approximation
	12.3 Saddle-point problems
	12.4 Problems

	13 Historical Notes

	Part IV — Isogeometric Analysis
	14 Isogeometric Finite Elements
	14.1 Sobolev estimations under h-refinement
	14.2 Galerkin approximation
	14.3 Exact DeRham sequences
	14.4 Problems

	15 Historical Notes

	Part V — Linear Algebra
	16 Kronecker Algebra
	16.1 Kronecker algebra
	16.2 Problems

	17 Historical Notes

	Part VI — Applications
	18 Navier Stokes
	18.1 Problems

	19 Historical Notes
	Bibliography
	Articles
	Books

